Suppr超能文献

三维集成纳米技术,实现单个芯片上的计算和数据存储。

Three-dimensional integration of nanotechnologies for computing and data storage on a single chip.

机构信息

Department of Electrical Engineering, Stanford University, Stanford, California, USA.

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Nature. 2017 Jul 5;547(7661):74-78. doi: 10.1038/nature22994.

Abstract

The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors-promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage-fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce 'highly processed' information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.

摘要

未来的数据密集型应用的计算需求将大大超过当前电子技术的能力,如果仅仅依靠晶体管、数据存储技术或集成电路架构的孤立改进,这些需求是不可能得到满足的。相反,需要变革性的纳米系统,这些系统利用新技术同时实现改进的设备和新的集成电路架构。在这里,我们展示了这样一个变革性纳米系统的原型。它由超过一百万个电阻式随机存取存储器单元和超过两百万个碳纳米管场效应晶体管组成——这两种都是有前途的新技术,可用于节能数字逻辑电路和高密度数据存储——在单个芯片的垂直堆叠层上制造。与传统的集成电路架构不同,分层制造实现了具有细粒度和密集垂直连接的三维集成电路架构,用于计算、数据存储以及输入和输出(在这种情况下是传感)层之间的连接。因此,我们的纳米系统每秒可以捕获大量数据,直接在芯片上存储数据,对捕获的数据进行原位处理,并生成“高度处理”的信息。作为一个工作原型,我们的纳米系统可以感应和分类环境气体。此外,由于这些层是在硅逻辑电路之上制造的,我们的纳米系统与现有的基于硅技术的基础设施兼容。这种复杂的纳米电子系统对于未来的高性能和高能效电子系统将是必不可少的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验