Suppr超能文献

贝叶斯方法在群体模型中识别和补偿模型误设定。

A Bayesian approach to identifying and compensating for model misspecification in population models.

出版信息

Ecology. 2014 Feb;95(2):329-41. doi: 10.1890/13-0187.1.

Abstract

State-space estimation methods are increasingly used in ecology to estimate productivity and abundance of natural populations while accounting for variability in both population dynamics and measurement processes. However, functional forms for population dynamics and density dependence often will not match the true biological process, and this may degrade the performance of state-space methods. We therefore developed a Bayesian semiparametric state-space model, which uses a Gaussian process (GP) to approximate the population growth function. This offers two benefits for population modeling. First, it allows data to update a specified "prior" on the population growth function, while reverting to this prior when data are uninformative. Second, it allows variability in population dynamics to be decomposed into random errors around the population growth function ("process error") and errors due to the mismatch between the specified prior and estimated growth function ("model error"). We used simulation modeling to illustrate the utility of GP methods in state-space population dynamics models. Results confirmed that the GP model performs similarly to a conventional state-space model when either (1) the prior matches the true process or (2) data are relatively uninformative. However, GP methods improve estimates of the population growth function when the function is misspecified. Results also demonstrated that the estimated magnitude of "model error" can be used to distinguish cases of model misspecification. We conclude with a discussion of the prospects for GP methods in other state-space models, including age and length-structured, meta-analytic, and individual-movement models.

摘要

状态空间估计方法在生态学中越来越多地被用于估计自然种群的生产力和丰度,同时考虑到种群动态和测量过程的变化。然而,种群动态和密度依赖性的函数形式通常不会与真实的生物过程匹配,这可能会降低状态空间方法的性能。因此,我们开发了一种贝叶斯半参数状态空间模型,该模型使用高斯过程 (GP) 来近似种群增长函数。这为种群建模提供了两个好处。首先,它允许数据更新种群增长函数的指定“先验”,而在数据无信息时恢复到该先验。其次,它允许种群动态的可变性分解为种群增长函数周围的随机误差(“过程误差”)和指定先验与估计增长函数之间的不匹配引起的误差(“模型误差”)。我们使用模拟建模来说明 GP 方法在状态空间种群动态模型中的实用性。结果证实,当(1)先验与真实过程匹配,或(2)数据相对无信息时,GP 模型的性能与传统的状态空间模型相似。然而,当函数被错误指定时,GP 方法可以改进种群增长函数的估计。结果还表明,可以使用估计的“模型误差”大小来区分模型误配的情况。我们最后讨论了 GP 方法在其他状态空间模型中的应用前景,包括年龄和长度结构、元分析和个体运动模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验