Suppr超能文献

通过高斯过程动态规划避免渔业管理中的临界点。

Avoiding tipping points in fisheries management through Gaussian process dynamic programming.

作者信息

Boettiger Carl, Mangel Marc, Munch Stephan

机构信息

Center for Stock Assessment Research, Department of Applied Math and Statistics, University of California, Mail Stop SOE-2, Santa Cruz, CA 95064, USA

Center for Stock Assessment Research, Department of Applied Math and Statistics, University of California, Mail Stop SOE-2, Santa Cruz, CA 95064, USA.

出版信息

Proc Biol Sci. 2015 Feb 22;282(1801):20141631. doi: 10.1098/rspb.2014.1631.

Abstract

Model uncertainty and limited data are fundamental challenges to robust management of human intervention in a natural system. These challenges are acutely highlighted by concerns that many ecological systems may contain tipping points, such as Allee population sizes. Before a collapse, we do not know where the tipping points lie, if they exist at all. Hence, we know neither a complete model of the system dynamics nor do we have access to data in some large region of state space where such a tipping point might exist. We illustrate how a Bayesian non-parametric approach using a Gaussian process (GP) prior provides a flexible representation of this inherent uncertainty. We embed GPs in a stochastic dynamic programming framework in order to make robust management predictions with both model uncertainty and limited data. We use simulations to evaluate this approach as compared with the standard approach of using model selection to choose from a set of candidate models. We find that model selection erroneously favours models without tipping points, leading to harvest policies that guarantee extinction. The Gaussian process dynamic programming (GPDP) performs nearly as well as the true model and significantly outperforms standard approaches. We illustrate this using examples of simulated single-species dynamics, where the standard model selection approach should be most effective and find that it still fails to account for uncertainty appropriately and leads to population crashes, while management based on the GPDP does not, as it does not underestimate the uncertainty outside of the observed data.

摘要

模型的不确定性和数据的有限性是对自然系统中人类干预进行稳健管理的根本挑战。许多生态系统可能包含诸如阿利效应种群规模等临界点,这种担忧使得这些挑战尤为突出。在崩溃之前,我们既不知道临界点在哪里,甚至不确定它们是否存在。因此,我们既没有系统动力学的完整模型,也无法获取状态空间中某个可能存在此类临界点的大区域的数据。我们说明了一种使用高斯过程(GP)先验的贝叶斯非参数方法如何灵活地表示这种内在的不确定性。我们将高斯过程嵌入到随机动态规划框架中,以便在模型不确定性和数据有限的情况下做出稳健的管理预测。与使用模型选择从一组候选模型中进行选择的标准方法相比,我们通过模拟来评估这种方法。我们发现,模型选择错误地倾向于没有临界点的模型,从而导致保证物种灭绝的捕捞政策。高斯过程动态规划(GPDP)的表现几乎与真实模型一样好,并且明显优于标准方法。我们通过模拟单物种动态的例子来说明这一点,在这种情况下标准模型选择方法应该是最有效的,但我们发现它仍然无法适当地考虑不确定性,导致种群崩溃,而基于GPDP的管理则不会,因为它不会低估观测数据之外的不确定性。

相似文献

2
Practical precautionary resource management using robust optimization.实用的防范性资源管理使用鲁棒优化。
Environ Manage. 2014 Oct;54(4):828-39. doi: 10.1007/s00267-014-0348-1. Epub 2014 Aug 13.
5
Revisiting Fishery Sustainability Targets.重新审视渔业可持续发展目标。
Bull Math Biol. 2024 Sep 16;86(11):127. doi: 10.1007/s11538-024-01352-7.
10
Timescales and the management of ecological systems.时间尺度与生态系统管理
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14568-14573. doi: 10.1073/pnas.1604974113. Epub 2016 Oct 11.

引用本文的文献

1
Avoiding critical thresholds through effective monitoring.通过有效监测避免临界阈值。
Proc Biol Sci. 2022 Jun 8;289(1976):20220526. doi: 10.1098/rspb.2022.0526. Epub 2022 Jun 15.
2
Hidden similarities in the dynamics of a weakly synchronous marine metapopulation.弱同步海洋复合种群动力学中的隐藏相似性。
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):479-485. doi: 10.1073/pnas.1910964117. Epub 2019 Dec 23.
4
Reverse-engineering ecological theory from data.从数据中反向工程生态理论。
Proc Biol Sci. 2018 May 16;285(1878). doi: 10.1098/rspb.2018.0422.

本文引用的文献

6
Mathematical ecology: why mechanistic models?数学生态学:为何是机理模型?
J Math Biol. 2012 Dec;65(6-7):1411-5. doi: 10.1007/s00285-011-0496-3. Epub 2011 Dec 13.
8
Early-warning signals for critical transitions.关键转变的早期预警信号。
Nature. 2009 Sep 3;461(7260):53-9. doi: 10.1038/nature08227.
9
Integrating resilience thinking and optimisation for conservation.将恢复力思维与保护优化相结合。
Trends Ecol Evol. 2009 Oct;24(10):549-54. doi: 10.1016/j.tree.2009.03.020. Epub 2009 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验