Sibarita Jean-Baptiste
Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, 33000, Bordeaux, France,
Histochem Cell Biol. 2014 Jun;141(6):587-95. doi: 10.1007/s00418-014-1214-1. Epub 2014 Mar 27.
The organization and dynamics of proteins are fundamental parameters for cellular function. Their study, at the single-molecule level, provides precise information on molecular interactions. Over the last 30 years, the single-particle tracking imaging technique has proven its capability to efficiently quantify such parameters in many biological systems, with nanometric accuracy and millisecond temporal resolutions. Nevertheless, the low concentration of labeling required for single-molecule imaging usually prevents the extraction of large statistics. The advent of high-density single-molecule-based super-resolution techniques has revolutionized the field, allowing monitoring of thousands of biomolecules in the minute timescale and providing unprecedented insight into the molecular organization and dynamics of cellular compounds. In this issue, I will review the main principles of single-particle tracking, a highly interdisciplinary technique at the interface between microscopy, image analysis and labeling strategies. I will point out the advantages brought by high-density single-particle tracking which will be illustrated with a few recent biological results.
蛋白质的组织和动力学是细胞功能的基本参数。在单分子水平上对其进行研究,可提供有关分子相互作用的精确信息。在过去30年中,单粒子跟踪成像技术已证明其能够在许多生物系统中高效地量化此类参数,具有纳米级的精度和毫秒级的时间分辨率。然而,单分子成像所需的低标记浓度通常阻碍了大量统计数据的提取。基于高密度单分子的超分辨率技术的出现彻底改变了这一领域,使得在分钟时间尺度内监测数千个生物分子成为可能,并为细胞化合物的分子组织和动力学提供了前所未有的见解。在本期中,我将回顾单粒子跟踪的主要原理,这是一种处于显微镜、图像分析和标记策略交叉点的高度跨学科技术。我将指出高密度单粒子跟踪带来的优势,并通过一些最新的生物学成果加以说明。