Narayanareddy Babu Reddy Janakaloti, Vartiainen Suvi, Hariri Neema, O'Dowd Diane K, Gross Steven P
Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA.
Traffic. 2014 Jul;15(7):762-71. doi: 10.1111/tra.12171. Epub 2014 Apr 30.
There is an increasing interest in factors that can impede cargo transport by molecular motors inside the cell. Although potentially relevant (Yi JY, Ori-McKenney KM, McKenney RJ, Vershinin M, Gross SP, Vallee RB. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J Cell Biol 2011;195:193-201), the importance of cargo size and subcellular location has received relatively little attention. Here we address these questions taking advantage of the fact that mitochondria - a common cargo - in Drosophila neurons exhibit a wide distribution of sizes. In addition, the mitochondria can be genetically marked with green fluorescent protein (GFP) making it possible to visualize and compare their movement in the cell bodies and in the processes of living cells. Using total internal reflection microscopy coupled with particle tracking and analysis, we quantified the transport properties of GFP-positive mitochondria as a function of their size and location. In neuronal cell bodies, we find little evidence for significant opposition to motion, consistent with a previous study on lipid droplets (Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, Welte MA, Gross SP. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 2008;135:1098-1107). However, in the processes, we observe an inverse relationship between the mitochondrial size and velocity and the run distances. This can be ameliorated via hypotonic treatment to increase process size, suggesting that motor-mediated movement is impeded in this more-confined environment. Interestingly, we also observe local mitochondrial accumulations in processes but not in cell bodies. Such accumulations do not completely block the transport but do increase the probability of mitochondria-mitochondria interactions. They are thus particularly interesting in relation to mitochondrial exchange of elements.
对于能够阻碍细胞内分子马达进行货物运输的因素,人们的兴趣与日俱增。尽管货物大小和亚细胞定位可能具有相关性(Yi JY、Ori-McKenney KM、McKenney RJ、Vershinin M、Gross SP、Vallee RB。高分辨率成像揭示了相反马达的间接协调以及LIS1在高负荷轴突运输中的作用。《细胞生物学杂志》2011年;195:193 - 201),但它们的重要性相对较少受到关注。在此,我们利用果蝇神经元中常见的货物——线粒体呈现出广泛大小分布这一事实来解决这些问题。此外,线粒体可以用绿色荧光蛋白(GFP)进行基因标记,从而能够可视化并比较它们在活细胞的细胞体和突起中的运动。通过结合粒子追踪和分析的全内反射显微镜技术,我们量化了GFP阳性线粒体的运输特性与其大小和位置的关系。在神经元细胞体中,我们几乎没有发现明显阻碍运动的证据,这与之前关于脂滴的研究结果一致(Shubeita GT、Tran SL、Xu J、Vershinin M、Cermelli S、Cotton SL、Welte MA、Gross SP。马达拷贝数对驱动蛋白-1驱动的脂滴细胞内运输的影响。《细胞》2008年;135:1098 - 1107)。然而,在突起中,我们观察到线粒体大小与速度以及行程距离之间存在反比关系。通过低渗处理增加突起大小可以改善这种情况,这表明在这个更狭窄的环境中,马达介导的运动受到了阻碍。有趣的是,我们还观察到线粒体在突起中存在局部积累,但在细胞体中没有。这种积累并没有完全阻断运输,但确实增加了线粒体之间相互作用的概率。因此,它们在与线粒体元素交换相关方面特别有趣。