Moody William E, Taylor Robin J, Edwards Nicola C, Chue Colin D, Umar Fraz, Taylor Tiffany J, Ferro Charles J, Young Alistair A, Townend Jonathan N, Leyva F, Steeds Richard P
Department of Cardiology, Nuffield House, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK; Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham, UK.
J Magn Reson Imaging. 2015 Apr;41(4):1000-12. doi: 10.1002/jmri.24623. Epub 2014 Mar 28.
To compare cardiovascular magnetic resonance-feature tracking (CMR-FT) with spatial modulation of magnetization (SPAMM) tagged imaging for the calculation of short and long axis Lagrangian strain measures in systole and diastole.
Healthy controls (n = 35) and patients with dilated cardiomyopathy (n = 10) were identified prospectively and underwent steady-state free precession (SSFP) cine imaging and SPAMM imaging using a gradient-echo sequence. A timed offline analysis of images acquired at identical horizontal long and short axis slice positions was performed using CMR-FT and dynamic tissue-tagging (CIMTag2D). Agreement between strain and strain rate (SR) values calculated using these two different methods was assessed using the Bland-Altman technique.
Across all participants, there was good agreement between CMR-FT and CIMTag for calculation of peak systolic global circumferential strain (-22.7 ± 6.2% vs. -22.5 ± 6.9%, bias 0.2 ± 4.0%) and SR (-1.35 ± 0.42 1/s vs. -1.22 ± 0.42 1/s, bias 0.13 ± 0.33 1/s) and early diastolic global circumferential SR (1.21 ± 0.44 1/s vs. 1.07 ± 0.30 1/s, bias -0.14 ± 0.34 1/s) at the subendocardium. There was satisfactory agreement for derivation of peak systolic global longitudinal strain (-18.1 ± 5.0% vs. -16.7 ± 4.8%, bias 1.3 ± 3.8%) and SR (-1.04 ± 0.29 1/s vs. -0.95 ± 0.32 1/s, bias 0.09 ± 0.26 1/s). The weakest agreement was for early diastolic global longitudinal SR (1.10 ± 0.40 1/s vs. 0.67 ± 0.32 1/s, bias -0.42 ± 0.40 1/s), although the correlation remained significant (r = 0.42, P < 0.01). CMR-FT generated these data over four times quicker than CIMTag.
There is sufficient agreement between systolic and diastolic strain measures calculated using CMR-FT and myocardial tagging for CMR-FT to be considered as a potentially feasible and rapid alternative.
比较心血管磁共振特征追踪(CMR-FT)与磁化空间调制(SPAMM)标记成像在计算收缩期和舒张期短轴和长轴拉格朗日应变测量值方面的差异。
前瞻性纳入健康对照者(n = 35)和扩张型心肌病患者(n = 10),使用梯度回波序列对其进行稳态自由进动(SSFP)电影成像和SPAMM成像。使用CMR-FT和动态组织标记(CIMTag2D)对在相同水平长轴和短轴切片位置采集的图像进行定时离线分析。使用Bland-Altman技术评估使用这两种不同方法计算的应变和应变率(SR)值之间的一致性。
在所有参与者中,CMR-FT和CIMTag在计算心内膜下收缩期峰值整体圆周应变(-22.7±6.2%对-22.5±6.9%,偏差0.2±4.0%)、SR(-1.35±0.42 1/s对-1.22±0.42 1/s,偏差0.13±0.33 1/s)以及舒张早期整体圆周SR(1.21±0.44 1/s对1.07±0.30 1/s,偏差-0.14±0.34 1/s)方面具有良好的一致性。在推导收缩期峰值整体纵向应变(-18.1±5.0%对-16.7±4.8%,偏差1.3±3.8%)和SR(-1.04±0.29 1/s对-0.95±0.32 1/s,偏差0.09±0.26 1/s)方面具有令人满意的一致性。一致性最差的是舒张早期整体纵向SR(1.10±0.40 1/s对0.67±0.32 1/s,偏差-0.42±0.40 1/s),尽管相关性仍然显著(r = 0.42,P < 0.01)。CMR-FT生成这些数据的速度比CIMTag快四倍以上。
使用CMR-FT和心肌标记计算的收缩期和舒张期应变测量值之间具有足够的一致性,CMR-FT可被视为一种潜在可行且快速的替代方法。