Suppr超能文献

网络演化的交联结构

Cross-linked structure of network evolution.

作者信息

Bassett Danielle S, Wymbs Nicholas F, Porter Mason A, Mucha Peter J, Grafton Scott T

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106, USA.

出版信息

Chaos. 2014 Mar;24(1):013112. doi: 10.1063/1.4858457.

Abstract

We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

摘要

我们通过网络的交叉链接结构来研究网络协同演化的时间共变,为此我们利用超图形式主义将交叉链接结构映射回网络节点。我们详细研究了两组时间网络数据。在一个耦合非线性振荡器网络中,由具有时间共变权重的网络边组成的超边揭示了振荡器群落内部和之间边权重动态的驱动协同演化模式。在人类大脑中,代表学习过程中大脑活动时间变化的网络呈现出早期协同演化,随后随着练习而趋于稳定。超边大小的后续减小与一个自主子图的出现一致,该子图的动态不再依赖于网络的其他部分。我们在真实和合成网络上的结果有力地证明了交叉链接结构在揭示真实和合成动力系统中意外协同演化属性方面的能力。反过来,这也说明了分析交叉链接对于研究时间网络结构的实用性。

相似文献

1
Cross-linked structure of network evolution.网络演化的交联结构
Chaos. 2014 Mar;24(1):013112. doi: 10.1063/1.4858457.
2
Synchronization from disordered driving forces in arrays of coupled oscillators.耦合振荡器阵列中无序驱动力引起的同步
Phys Rev Lett. 2006 Jan 27;96(3):034104. doi: 10.1103/PhysRevLett.96.034104. Epub 2006 Jan 26.
5
Disorder induces explosive synchronization.紊乱引发爆发性同步。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062811. doi: 10.1103/PhysRevE.89.062811. Epub 2014 Jun 24.

引用本文的文献

1
Living on the edge: network neuroscience beyond nodes.边缘生活:节点之外的网络神经科学。
Trends Cogn Sci. 2023 Nov;27(11):1068-1084. doi: 10.1016/j.tics.2023.08.009. Epub 2023 Sep 14.
3
Principles and open questions in functional brain network reconstruction.功能脑网络重建中的原理和开放性问题。
Hum Brain Mapp. 2021 Aug 1;42(11):3680-3711. doi: 10.1002/hbm.25462. Epub 2021 May 20.
5
9
On the nature and use of models in network neuroscience.网络神经科学中模型的本质和用途。
Nat Rev Neurosci. 2018 Sep;19(9):566-578. doi: 10.1038/s41583-018-0038-8.

本文引用的文献

1
Task-based core-periphery organization of human brain dynamics.基于任务的人类大脑动力学的核心-边缘组织。
PLoS Comput Biol. 2013;9(9):e1003171. doi: 10.1371/journal.pcbi.1003171. Epub 2013 Sep 26.
2
Coevolution and correlated multiplexity in multiplex networks.多重网络中的共同进化和关联多重性。
Phys Rev Lett. 2013 Aug 2;111(5):058702. doi: 10.1103/PhysRevLett.111.058702. Epub 2013 Jul 31.
6
Neuroplasticity subserving motor skill learning.神经可塑性在运动技能学习中的作用。
Neuron. 2011 Nov 3;72(3):443-54. doi: 10.1016/j.neuron.2011.10.008.
7
Altered resting state complexity in schizophrenia.精神分裂症患者的静息态复杂度改变。
Neuroimage. 2012 Feb 1;59(3):2196-207. doi: 10.1016/j.neuroimage.2011.10.002. Epub 2011 Oct 8.
8
Temporal evolution of financial-market correlations.金融市场相关性的时间演变。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 2):026109. doi: 10.1103/PhysRevE.84.026109. Epub 2011 Aug 8.
10
Dynamic reconfiguration of human brain networks during learning.学习过程中人类大脑网络的动态重新配置。
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7641-6. doi: 10.1073/pnas.1018985108. Epub 2011 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验