Suppr超能文献

精神分裂症患者的静息态复杂度改变。

Altered resting state complexity in schizophrenia.

机构信息

Complex Systems Group, Department of Physics, University of California, Santa Barbara, CA 93106, United States.

出版信息

Neuroimage. 2012 Feb 1;59(3):2196-207. doi: 10.1016/j.neuroimage.2011.10.002. Epub 2011 Oct 8.

Abstract

The complexity of the human brain's activity and connectivity varies over temporal scales and is altered in disease states such as schizophrenia. Using a multi-level analysis of spontaneous low-frequency fMRI data stretching from the activity of individual brain regions to the coordinated connectivity pattern of the whole brain, we investigate the role of brain signal complexity in schizophrenia. Specifically, we quantitatively characterize the univariate wavelet entropy of regional activity, the bivariate pairwise functional connectivity between regions, and the multivariate network organization of connectivity patterns. Our results indicate that univariate measures of complexity are less sensitive to disease state than higher level bivariate and multivariate measures. While wavelet entropy is unaffected by disease state, the magnitude of pairwise functional connectivity is significantly decreased in schizophrenia and the variance is increased. Furthermore, by considering the network structure as a function of correlation strength, we find that network organization specifically of weak connections is strongly correlated with attention, memory, and negative symptom scores and displays potential as a clinical biomarker, providing up to 75% classification accuracy and 85% sensitivity. We also develop a general statistical framework for the testing of group differences in network properties, which is broadly applicable to studies where changes in network organization are crucial to the understanding of brain function.

摘要

人脑活动和连接的复杂性随时间尺度而变化,并在精神分裂症等疾病状态下发生改变。我们使用自发低频 fMRI 数据的多层次分析,从单个脑区的活动延伸到整个大脑的协调连接模式,研究了大脑信号复杂性在精神分裂症中的作用。具体而言,我们定量描述了区域活动的单变量小波熵、区域之间的双变量成对功能连接以及连接模式的多变量网络组织。我们的结果表明,与更高层次的双变量和多变量测量相比,单变量复杂性测量对疾病状态的敏感性较低。虽然小波熵不受疾病状态的影响,但精神分裂症中双变量功能连接的幅度显著降低,方差增加。此外,通过将网络结构视为相关强度的函数,我们发现网络组织,特别是弱连接的网络组织,与注意力、记忆和负性症状评分密切相关,具有作为临床生物标志物的潜力,可提供高达 75%的分类准确率和 85%的灵敏度。我们还开发了一个用于测试网络特性中组间差异的一般统计框架,该框架广泛适用于网络组织变化对理解大脑功能至关重要的研究。

相似文献

1
Altered resting state complexity in schizophrenia.精神分裂症患者的静息态复杂度改变。
Neuroimage. 2012 Feb 1;59(3):2196-207. doi: 10.1016/j.neuroimage.2011.10.002. Epub 2011 Oct 8.
2
Whole brain resting state functional connectivity abnormalities in schizophrenia.精神分裂症全脑静息态功能连接异常。
Schizophr Res. 2012 Aug;139(1-3):7-12. doi: 10.1016/j.schres.2012.04.021. Epub 2012 May 26.
10
Altered functional and anatomical connectivity in schizophrenia.精神分裂症中功能和解剖连接的改变。
Schizophr Bull. 2011 May;37(3):640-50. doi: 10.1093/schbul/sbp131. Epub 2009 Nov 17.

引用本文的文献

5
Normalization and cross-entropy connectivity in brain disease classification.脑疾病分类中的归一化与交叉熵连通性
iScience. 2025 Mar 17;28(4):112226. doi: 10.1016/j.isci.2025.112226. eCollection 2025 Apr 18.

本文引用的文献

1
Are brain networks stable during a 24-hour period?大脑网络在 24 小时内稳定吗?
Neuroimage. 2012 Jan 2;59(1):456-66. doi: 10.1016/j.neuroimage.2011.07.049. Epub 2011 Jul 23.
2
Dynamic reconfiguration of human brain networks during learning.学习过程中人类大脑网络的动态重新配置。
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7641-6. doi: 10.1073/pnas.1018985108. Epub 2011 Apr 18.
8
The development of a noisy brain.嘈杂大脑的发展
Arch Ital Biol. 2010 Sep;148(3):323-37.
9
Brain graphs: graphical models of the human brain connectome.脑图谱:人类脑连接组的图形模型。
Annu Rev Clin Psychol. 2011;7:113-40. doi: 10.1146/annurev-clinpsy-040510-143934.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验