Liang Yan, Harris Frank L, Brown Lou Ann S
Department of Pediatrics, Emory University, Atlanta, GA 30322, USA ; Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA ; Division of Pulmonary, Allergy & Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
Department of Pediatrics, Emory University, Atlanta, GA 30322, USA ; Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA.
Biomed Res Int. 2014;2014:371593. doi: 10.1155/2014/371593. Epub 2014 Feb 19.
An alcohol use disorder increases the risk of invasive and antimicrobial resistant community-acquired pneumonia and tuberculosis. Since the alveolar macrophage (AM) orchestrates the immune response in the alveolar space, understanding the underlying mechanisms by which alcohol suppresses AM phagocytosis is critical to improving clinical outcomes. In the alveolar space, chronic alcohol ingestion causes severe oxidative stress and depletes antioxidants which are critical for AM function. The mitochondrion is important in maintaining cellular redox balance and providing the ATP critical for phagocytosis. The focus of this study was to understand how alcohol triggers mitochondrial reactive oxygen species (ROS), stimulates cellular oxidative stress, and induces AM dysfunction. The current study also investigated the capacity of the mitochondrial targeted antioxidant, mitoTEMPOL (mitoT), in modulating mitochondrial oxidative stress, and AM dysfunction. Using in vitro ethanol exposure and AMs from ethanol-fed mice, ethanol promoted mitochondrial dysfunction including increased mitochondrial ROS, decreased mitochondrial membrane potential, and decreased ATP. Treatment with mitoT reversed these effects. Ethanol-induced decreases in phagocytosis and cell viability were also attenuated with mitoT. Therefore, antioxidants targeted to the mitochondria have the potential to ameliorate ethanol-induced mitochondrial oxidative stress and subsequent decreases in AM phagocytosis and cell viability.
酒精使用障碍会增加侵袭性和耐抗菌药物的社区获得性肺炎及肺结核的风险。由于肺泡巨噬细胞(AM)在肺泡腔中协调免疫反应,了解酒精抑制AM吞噬作用的潜在机制对于改善临床结果至关重要。在肺泡腔中,长期摄入酒精会导致严重的氧化应激,并耗尽对AM功能至关重要的抗氧化剂。线粒体在维持细胞氧化还原平衡以及提供吞噬作用所需的ATP方面起着重要作用。本研究的重点是了解酒精如何触发线粒体活性氧(ROS)、刺激细胞氧化应激并导致AM功能障碍。当前研究还调查了线粒体靶向抗氧化剂米托坦(mitoTEMPOL,mitoT)调节线粒体氧化应激和AM功能障碍的能力。使用体外乙醇暴露和来自乙醇喂养小鼠的AM,乙醇会促进线粒体功能障碍,包括线粒体ROS增加、线粒体膜电位降低和ATP减少。用mitoT处理可逆转这些影响。mitoT还可减轻乙醇诱导的吞噬作用和细胞活力下降。因此,靶向线粒体的抗氧化剂有可能改善乙醇诱导的线粒体氧化应激以及随后AM吞噬作用和细胞活力的下降。