Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147-2408, USA.
Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147-2408, USA.
Curr Biol. 2014 May 5;24(9):976-83. doi: 10.1016/j.cub.2014.03.017. Epub 2014 Apr 3.
Visual motion perception is critical to many animal behaviors, and flies have emerged as a powerful model system for exploring this fundamental neural computation. Although numerous studies have suggested that fly motion vision is governed by a simple neural circuit [1-3], the implementation of this circuit has remained mysterious for decades. Connectomics and neurogenetics have produced a surge in recent progress, and several studies have shown selectivity for light increments (ON) or decrements (OFF) in key elements associated with this circuit [4-7]. However, related studies have reached disparate conclusions about where this selectivity emerges and whether it plays a major role in motion vision [8-13]. To address these questions, we examined activity in the neuropil thought to be responsible for visual motion detection, the medulla, of Drosophila melanogaster in response to a range of visual stimuli using two-photon calcium imaging. We confirmed that the input neurons of the medulla, the LMCs, are not responsible for light-on and light-off selectivity. We then examined the pan-neural response of medulla neurons and found prominent selectivity for light-on and light-off in layers of the medulla associated with two anatomically derived pathways (L1/L2 associated) [14, 15]. We next examined the activity of prominent interneurons within each pathway (Mi1 and Tm1) and found that these neurons have corresponding selectivity for light-on or light-off. These results provide direct evidence that motion is computed in parallel light-on and light-off pathways, demonstrate that this selectivity emerges in neurons immediately downstream of the LMCs, and specify where crucial elements of motion computation occur.
视觉运动感知对许多动物行为至关重要,而果蝇已成为探索这一基本神经计算的强大模式系统。尽管许多研究表明,果蝇的运动视觉受一个简单的神经回路[1-3]控制,但这个回路的实现几十年来一直是个谜。连接组学和神经遗传学最近取得了突飞猛进的进展,几项研究表明,在与该回路相关的关键元件中,光的增加(ON)或减少(OFF)具有选择性[4-7]。然而,相关研究对这种选择性出现的位置以及它是否在运动视觉中起主要作用得出了不同的结论[8-13]。为了解决这些问题,我们使用双光子钙成像技术,研究了果蝇中被认为负责视觉运动检测的神经髓质中的神经突,以一系列视觉刺激来检测其活动。我们证实,神经髓质的输入神经元(LMCs)对光的ON 和 OFF 选择性没有反应。然后,我们检查了神经髓质神经元的全神经反应,发现与两个解剖衍生途径(L1/L2 相关)[14,15]相关的神经髓质层中存在明显的光 ON 和光 OFF 选择性。接下来,我们检查了每个途径内的突出中间神经元(Mi1 和 Tm1)的活性,发现这些神经元对光 ON 或光 OFF 具有相应的选择性。这些结果提供了运动在光 ON 和光 OFF 平行途径中计算的直接证据,表明这种选择性出现在 LMCs 下游的神经元中,并指定了运动计算的关键元素发生的位置。