Suppr超能文献

果蝇视动检测器神经输入元件的功能特化

Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector.

作者信息

Ammer Georg, Leonhardt Aljoscha, Bahl Armin, Dickson Barry J, Borst Alexander

机构信息

Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.

Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.

出版信息

Curr Biol. 2015 Aug 31;25(17):2247-53. doi: 10.1016/j.cub.2015.07.014. Epub 2015 Jul 30.

Abstract

Detecting the direction of visual movement is fundamental for every sighted animal in order to navigate, avoid predators, or detect conspecifics. Algorithmic models of correlation-type motion detectors describe the underlying computation remarkably well. They consist of two spatially separated input lines that are asymmetrically filtered in time and then interact in a nonlinear way. However, the cellular implementation of this computation remains elusive. Recent connectomic data of the Drosophila optic lobe has suggested a neural circuit for the detection of moving bright edges (ON motion) with medulla cells Mi1 and Tm3 providing spatially offset input to direction-selective T4 cells, thereby forming the two input lines of a motion detector. Electrophysiological characterization of Mi1 and Tm3 revealed different temporal filtering properties and proposed them to correspond to the delayed and direct input, respectively. Here, we test this hypothesis by silencing either Mi1 or Tm3 cells and using electrophysiological recordings and behavioral responses of flies as a readout. We show that Mi1 is a necessary element of the ON pathway under all stimulus conditions. In contrast, Tm3 is specifically required only for the detection of fast ON motion in the preferred direction. We thereby provide first functional evidence that Mi1 and Tm3 are key elements of the ON pathway and uncover an unexpected functional specialization of these two cell types. Our results thus require an elaboration of the currently prevailing model for ON motion detection and highlight the importance of functional studies for neural circuit breaking.

摘要

对于每一个有视觉的动物来说,检测视觉运动的方向对于导航、躲避捕食者或发现同种个体至关重要。相关型运动探测器的算法模型能够很好地描述其背后的计算过程。它们由两条在空间上分离的输入线组成,这两条线在时间上进行非对称滤波,然后以非线性方式相互作用。然而,这种计算在细胞层面的实现方式仍然不明确。果蝇视叶最近的连接组数据表明,存在一个用于检测移动亮边(开运动)的神经回路,其中髓质细胞Mi1和Tm3为方向选择性T4细胞提供空间上偏移的输入,从而形成运动探测器的两条输入线。对Mi1和Tm3的电生理特性分析揭示了不同的时间滤波特性,并提出它们分别对应延迟输入和直接输入。在这里,我们通过沉默Mi1或Tm3细胞,并使用果蝇的电生理记录和行为反应作为读出指标来检验这一假设。我们发现,在所有刺激条件下,Mi1都是开通路的必要元素。相比之下,Tm3仅在检测首选方向上的快速开运动时才是特异性必需的。因此,我们提供了首个功能证据,证明Mi1和Tm3是开通路的关键元素,并揭示了这两种细胞类型意想不到的功能特化。我们的结果因此需要对当前流行的开运动检测模型进行完善,并突出了功能研究对于神经回路解析的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验