文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

长期分子动力学模拟在预测癌症相关单核苷酸多态性中的应用。

Use of long term molecular dynamics simulation in predicting cancer associated SNPs.

作者信息

Kumar Ambuj, Purohit Rituraj

机构信息

Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India.

出版信息

PLoS Comput Biol. 2014 Apr 10;10(4):e1003318. doi: 10.1371/journal.pcbi.1003318. eCollection 2014 Apr.


DOI:10.1371/journal.pcbi.1003318
PMID:24722014
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3983272/
Abstract

Computational prediction of cancer associated SNPs from the large pool of SNP dataset is now being used as a tool for detecting the probable oncogenes, which are further examined in the wet lab experiments. The lack in prediction accuracy has been a major hurdle in relying on the computational results obtained by implementing multiple tools, platforms and algorithms for cancer associated SNP prediction. Our result obtained from the initial computational compilations suggests the strong chance of Aurora-A G325W mutation (rs11539196) to cause hepatocellular carcinoma. The implementation of molecular dynamics simulation (MDS) approaches has significantly aided in raising the prediction accuracy of these results, but measuring the difference in the convergence time of mutant protein structures has been a challenging task while setting the simulation timescale. The convergence time of most of the protein structures may vary from 10 ns to 100 ns or more, depending upon its size. Thus, in this work we have implemented 200 ns of MDS to aid the final results obtained from computational SNP prediction technique. The MDS results have significantly explained the atomic alteration related with the mutant protein and are useful in elaborating the change in structural conformations coupled with the computationally predicted cancer associated mutation. With further advancements in the computational techniques, it will become much easier to predict such mutations with higher accuracy level.

摘要

从大量单核苷酸多态性(SNP)数据集中对癌症相关SNP进行计算预测,目前正被用作检测可能的致癌基因的工具,这些致癌基因会在湿实验室实验中进一步研究。预测准确性的不足一直是依赖通过多种工具、平台和算法进行癌症相关SNP预测所获得的计算结果的主要障碍。我们从最初的计算汇编中获得的结果表明,极光激酶A(Aurora-A)G325W突变(rs11539196)极有可能导致肝细胞癌。分子动力学模拟(MDS)方法的应用显著提高了这些结果的预测准确性,但在设置模拟时间尺度时,测量突变蛋白结构收敛时间的差异一直是一项具有挑战性的任务。大多数蛋白质结构的收敛时间可能因大小而异,从10纳秒到100纳秒或更长。因此,在这项工作中,我们实施了200纳秒的MDS,以辅助从计算SNP预测技术获得的最终结果。MDS结果显著解释了与突变蛋白相关的原子变化,有助于阐述与计算预测的癌症相关突变相关的结构构象变化。随着计算技术的进一步发展,以更高的准确性预测此类突变将变得更加容易。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/ccbc07ec9ed0/pcbi.1003318.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/322a75fd0712/pcbi.1003318.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/cbca16f5ace2/pcbi.1003318.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/14649d9af10a/pcbi.1003318.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/36d59370230a/pcbi.1003318.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/bff0ce7f0092/pcbi.1003318.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/c086d9651883/pcbi.1003318.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/5c6773b8b0bf/pcbi.1003318.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/4693d209ff73/pcbi.1003318.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/e1e1b2cc9731/pcbi.1003318.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/6ee47ac431e5/pcbi.1003318.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/953031f0cd37/pcbi.1003318.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/6e6a3ef76daf/pcbi.1003318.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/40058291a96d/pcbi.1003318.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/ccbc07ec9ed0/pcbi.1003318.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/322a75fd0712/pcbi.1003318.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/cbca16f5ace2/pcbi.1003318.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/14649d9af10a/pcbi.1003318.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/36d59370230a/pcbi.1003318.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/bff0ce7f0092/pcbi.1003318.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/c086d9651883/pcbi.1003318.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/5c6773b8b0bf/pcbi.1003318.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/4693d209ff73/pcbi.1003318.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/e1e1b2cc9731/pcbi.1003318.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/6ee47ac431e5/pcbi.1003318.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/953031f0cd37/pcbi.1003318.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/6e6a3ef76daf/pcbi.1003318.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/40058291a96d/pcbi.1003318.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9536/3983272/ccbc07ec9ed0/pcbi.1003318.g014.jpg

相似文献

[1]
Use of long term molecular dynamics simulation in predicting cancer associated SNPs.

PLoS Comput Biol. 2014-4-10

[2]
Computational SNP analysis: current approaches and future prospects.

Cell Biochem Biophys. 2014-3

[3]
Evidence of colorectal cancer-associated mutation in MCAK: a computational report.

Cell Biochem Biophys. 2013

[4]
In silico screening and molecular dynamics simulation of disease-associated nsSNP in TYRP1 gene and its structural consequences in OCA3.

Biomed Res Int. 2013-6-19

[5]
screening of deleterious single nucleotide polymorphisms (SNPs) and molecular dynamics simulation of disease associated mutations in gene responsible for oculocutaneous albinism type 6 (OCA 6) disorder.

J Biomol Struct Dyn. 2018-12-5

[6]
Identifying novel oncogenes: a machine learning approach.

Interdiscip Sci. 2014-1-10

[7]
Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E.

Mutat Res. 2012-9-2

[8]
Computational insights of K1444N substitution in GAP-related domain of NF1 gene associated with neurofibromatosis type 1 disease: a molecular modeling and dynamics approach.

Metab Brain Dis. 2018-5-27

[9]
A Comprehensive In Silico Analysis on the Structural and Functional Impact of SNPs in the Congenital Heart Defects Associated with NKX2-5 Gene-A Molecular Dynamic Simulation Approach.

PLoS One. 2016-5-6

[10]
In-silico screening of cancer associated mutation on PLK1 protein and its structural consequences.

J Mol Model. 2013-11-23

引用本文的文献

[1]
Phytochemical and pharmacoinformatics analysis of a traditional antipsoriatic oil formulation for its potential against proinflammatory cytokines TNF-α and IL-17A.

PLoS One. 2025-9-2

[2]
In silico identification of PPARγ agonists from diffractaic acid analogs in prostate cancer: a comprehensive computational approach.

3 Biotech. 2025-7

[3]
Comprehensive in silico characterization of nonsynonymous SNPs in the human ezrin (EZR) gene and their role in disease pathogenesis.

Biochem Biophys Rep. 2025-3-8

[4]
Expanding the genotypic and phenotypic spectrum of EAST/SeSAME syndrome: identification of a novel homozygous mutation (c.194 G > A) in KCNJ10 gene.

Neurol Sci. 2025-2

[5]
Atomistic simulations reveal impacts of missense mutations on the structure and function of SynGAP1.

Brief Bioinform. 2024-9-23

[6]
Machine Learning Methods for Small Data Challenges in Molecular Science.

Chem Rev. 2023-7-12

[7]
Impact of highly deleterious non-synonymous polymorphisms on GRIN2A protein's structure and function.

PLoS One. 2023

[8]
Screening of drug candidates against Endothelin-1 to treat hypertension using computational based approaches: Molecular docking and dynamics simulation.

PLoS One. 2022

[9]
A novel causative functional mutation in GATA6 gene is responsible for familial dilated cardiomyopathy as supported by in silico functional analysis.

Sci Rep. 2022-8-12

[10]
Conformational flexibility of a free and TCR-bound pMHC-I protein investigated by long-term molecular dynamics simulations.

BMC Immunol. 2022-7-29

本文引用的文献

[1]
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.

J Chem Theory Comput. 2008-3

[2]
Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight.

J Biomol Struct Dyn. 2014

[3]
Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain.

PLoS One. 2013-5-31

[4]
Predicting the functional consequences of cancer-associated amino acid substitutions.

Bioinformatics. 2013-4-25

[5]
Evidence of colorectal cancer-associated mutation in MCAK: a computational report.

Cell Biochem Biophys. 2013

[6]
Computational investigation of cancer-associated molecular mechanism in Aurora A (S155R) mutation.

Cell Biochem Biophys. 2013-7

[7]
Drug resistance mechanism of PncA in Mycobacterium tuberculosis.

J Biomol Struct Dyn. 2013-2-6

[8]
Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E.

Mutat Res. 2012-9-2

[9]
Computational investigation of pathogenic nsSNPs in CEP63 protein.

Gene. 2012-4-24

[10]
Activation of Aurora-A kinase by protein partner binding and phosphorylation are independent and synergistic.

J Biol Chem. 2011-11-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索