Tavío María M, Jacoby George A, Hooper David C
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Microbiología, Departamento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria, Las Palmas de G.C., España
Lahey Hospital and Medical Center, Burlington, MA, USA.
J Antimicrob Chemother. 2014 Aug;69(8):2102-9. doi: 10.1093/jac/dku102. Epub 2014 Apr 11.
Loop B is important for low-level quinolone resistance conferred by Qnr proteins. The role of individual amino acids within QnrS1 loop B in quinolone resistance and gyrase protection was assessed.
qnrS1 and 11 qnrS1 alleles with site-directed Ala mutations in loop B were expressed in Escherichia coli BL21(DE3) and proteins were purified by affinity chromatography. Ciprofloxacin MICs were determined with and without IPTG. Gyrase DNA supercoiling was measured with and without ciprofloxacin IC50 and with various concentrations of QnrS1 proteins.
Wild-type QnrS1 and QnrS1 with Asn-110→Ala and Arg-111→Ala substitutions increased the ciprofloxacin MIC 12-fold in BL21(DE3), although QnrS1 with Gln-107→Ala replacement increased it 2-fold more than wild-type did. However, QnrS1 with Ala substitutions at His-106, Val-108, Ser-109, Met-112, Tyr-113, Phe-114, Cys-115 and Ser-116 increased ciprofloxacin MIC 1.4- to 8-fold less than wild-type QnrS1. Induction by 10-1000 μM IPTG increased ciprofloxacin MICs for all mutants, reaching values similar to those for wild-type. Purified wild-type and mutated proteins differed in protection of gyrase from ciprofloxacin action. Wild-type QnrS1 produced complete protection of gyrase supercoiling from ciprofloxacin (1.8 μM) action at 0.05 nM and half protection at 0.5 pM, whereas QnrS1 with Ala replacements that conferred the least increase in ciprofloxacin MICs also required the highest QnrS1 concentrations for protection.
Key individual residues in QnrS1 loop B affect ciprofloxacin resistance and gyrase protection from ciprofloxacin action, supporting the concept that loop B is key for interaction with gyrase necessary for quinolone resistance.
环B对于Qnr蛋白介导的低水平喹诺酮耐药性很重要。评估了QnrS1环B内单个氨基酸在喹诺酮耐药性和拓扑异构酶保护中的作用。
qnrS1和11个在环B中有定点丙氨酸突变的qnrS1等位基因在大肠杆菌BL21(DE3)中表达,蛋白质通过亲和层析纯化。在有和没有异丙基-β-D-硫代半乳糖苷(IPTG)的情况下测定环丙沙星的最低抑菌浓度(MIC)。在有和没有环丙沙星半数抑制浓度(IC50)以及有不同浓度QnrS1蛋白的情况下测量拓扑异构酶的DNA超螺旋。
野生型QnrS1以及天冬酰胺-110→丙氨酸和精氨酸-111→丙氨酸替换的QnrS1使BL21(DE3)中环丙沙星的MIC增加了12倍,尽管谷氨酰胺-107→丙氨酸替换的QnrS1使其增加的幅度比野生型多2倍。然而,组氨酸-106、缬氨酸-108、丝氨酸-109、甲硫氨酸-112、酪氨酸-113、苯丙氨酸-114、半胱氨酸-115和丝氨酸-116被丙氨酸替换的QnrS1使环丙沙星的MIC增加幅度比野生型QnrS1少1.4至8倍。10 - 1000μM IPTG诱导使所有突变体的环丙沙星MIC增加,达到与野生型相似的值。纯化的野生型和突变型蛋白在拓扑异构酶免受环丙沙星作用的保护方面存在差异。野生型QnrS1在0.05 nM时对环丙沙星(1.8μM)作用产生的拓扑异构酶超螺旋完全保护,在0.5 pM时产生半数保护,而环丙沙星MIC增加最少的丙氨酸替换的QnrS1在保护时也需要最高的QnrS1浓度。
QnrS1环B中的关键单个残基影响环丙沙星耐药性以及拓扑异构酶免受环丙沙星作用的保护,支持环B是与喹诺酮耐药性所需的拓扑异构酶相互作用的关键这一概念。