Suppr超能文献

水生环境作为可转移低水平喹诺酮耐药性的热点及其对高水平喹诺酮耐药性的潜在贡献

Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance.

作者信息

Miranda Claudio D, Concha Christopher, Godoy Félix A, Lee Matthew R

机构信息

Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile.

Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile.

出版信息

Antibiotics (Basel). 2022 Oct 27;11(11):1487. doi: 10.3390/antibiotics11111487.

Abstract

The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, , encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.

摘要

抗生素在水生环境中的排放有利于选择具有抗生素抗性机制的细菌。喹诺酮类是广泛应用于人类和兽医学的杀菌性抗菌药物。一些喹诺酮抗性机制由不同的细菌基因编码,而其他机制则是这些抗生素作用的酶发生突变的结果。喹诺酮抗性基因在全球水生环境中的出现已有广泛报道,特别是在受城市排放影响的地区。最常报道的喹诺酮抗性基因,编码Qnr蛋白,该蛋白可保护DNA促旋酶和拓扑异构酶IV免受喹诺酮活性的影响。需要注意的是,低水平抗性通常是高水平抗性发展的第一步,因为携带这些基因的细菌与在低浓度该抗菌类环境中高度敏感的细菌群体相比具有适应性优势。此外,这些基因可与喹诺酮靶蛋白序列中的染色体突变协同作用,导致高水平喹诺酮抗性。水生环境中基因的出现很可能是由于携带这些基因的细菌通过人为污染释放,并由排放到这些环境中的抗菌残留物的选择活性维持。喹诺酮抗性水平的这种增加在临床环境和更广泛的水生环境中都有后果,在这些环境中,普通人群面临的暴露风险增加,这对基于喹诺酮的人类和动物治疗的疗效构成重大威胁。在这篇综述中,将讨论水生环境作为基因库的潜在作用、它们在降低对各种喹诺酮敏感性方面的活性,以及这些基因促成喹诺酮高水平抗性获得和传播的可能方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e340/9687057/2ee6797e17c4/antibiotics-11-01487-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验