Suppr超能文献

在大肠杆菌中,Qnr 表达量的增加足以使其对环丙沙星产生临床耐药性。

Increased expression of Qnr is sufficient to confer clinical resistance to ciprofloxacin in Escherichia coli.

机构信息

Department of Medical Biochemistry and Microbiology, Biomedical Centre (Box 582), Uppsala University, Husargatan 3, Uppsala 75123, Sweden.

出版信息

J Antimicrob Chemother. 2018 Feb 1;73(2):348-352. doi: 10.1093/jac/dkx375.

Abstract

BACKGROUND

Ciprofloxacin, a fluoroquinolone, targets two essential bacterial enzymes, DNA gyrase and topoisomerase IV. Plasmid-borne qnr genes, encoding proteins that protect DNA gyrase and topoisomerase IV from inhibition by fluoroquinolones, contribute to resistance development. However, the presence of a plasmid-borne qnr gene alone is insufficient to confer clinical resistance.

OBJECTIVES

We asked whether the level of expression of qnr was a limiting factor in its ability to confer clinical resistance and whether expression could be increased without reducing fitness or viability.

METHODS

qnrB and qnrS were recombineered onto the chromosome of Escherichia coli under the control of constitutive promoters of various strengths. Expression was measured by qPCR, MIC and relative fitness as a function of expression level were determined.

RESULTS

For both qnr genes there was a positive relationship between the level of qnr mRNA and the MIC of ciprofloxacin. The highest MICs achieved with qnrB or qnrS as the sole resistance determinant were 0.375 and 1 mg/L, respectively, and were reached at expression levels that did not affect growth rate or viability. The qnrS-mediated MIC is above the EUCAST clinical breakpoint for resistance to ciprofloxacin. In the absence of Lon protease activity, overexpression of qnr genes was associated with high fitness cost, possibly explaining observations of toxicity in other genetic backgrounds.

CONCLUSIONS

The ability to generate a high MIC without incurring a fitness cost shows that, in an appropriate genetic context, qnrS has the potential to generate clinical resistance to ciprofloxacin in one step.

摘要

背景

环丙沙星是一种氟喹诺酮类药物,针对两种必需的细菌酶,即 DNA 回旋酶和拓扑异构酶 IV。质粒携带的 qnr 基因,编码能够保护 DNA 回旋酶和拓扑异构酶 IV 免受氟喹诺酮类药物抑制的蛋白质,有助于耐药性的发展。然而,质粒携带的 qnr 基因本身的存在不足以赋予临床耐药性。

目的

我们想知道 qnr 的表达水平是否是其赋予临床耐药性的能力的限制因素,以及是否可以在不降低适应性或生存能力的情况下增加表达。

方法

qnrB 和 qnrS 通过重组酶被引入大肠埃希菌的染色体上,受不同强度的组成型启动子的控制。通过 qPCR 测量表达量,根据表达水平确定 MIC 和相对适应性。

结果

对于两种 qnr 基因,qnr mRNA 的水平与环丙沙星的 MIC 呈正相关。qnrB 或 qnrS 作为唯一的耐药决定因素,MIC 的最高值分别为 0.375 和 1mg/L,达到了不影响生长速率或生存能力的表达水平。qnrS 介导的 MIC 高于欧盟药敏试验委员会(EUCAST)对环丙沙星耐药的临床折点。在 Lon 蛋白酶活性缺失的情况下,qnr 基因的过表达与高适应性成本相关,这可能解释了在其他遗传背景下观察到的毒性现象。

结论

在不产生适应性成本的情况下产生高 MIC 的能力表明,在适当的遗传背景下,qnrS 有可能在一步内产生对环丙沙星的临床耐药性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/384f/5890660/3bf404fbc451/dkx375f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验