Suppr超能文献

在体外模拟宿主及其微环境以研究铜绿假单胞菌引起的黏膜感染。

Mimicking the host and its microenvironment in vitro for studying mucosal infections by Pseudomonas aeruginosa.

作者信息

Crabbé Aurélie, Ledesma Maria A, Nickerson Cheryl A

机构信息

The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA.

出版信息

Pathog Dis. 2014 Jun;71(1):1-19. doi: 10.1111/2049-632X.12180. Epub 2014 May 23.

Abstract

Why is a healthy person protected from Pseudomonas aeruginosa infections, while individuals with cystic fibrosis or damaged epithelium are particularly susceptible to this opportunistic pathogen? To address this question, it is essential to thoroughly understand the dynamic interplay between the host microenvironment and P. aeruginosa. Therefore, using model systems that represent key aspects of human mucosal tissues in health and disease allows recreating in vivo host-pathogen interactions in a physiologically relevant manner. In this review, we discuss how factors of mucosal tissues, such as apical-basolateral polarity, junctional complexes, extracellular matrix proteins, mucus, multicellular complexity (including indigenous microbiota), and other physicochemical factors affect P. aeruginosa pathogenesis and are thus important to mimic in vitro. We highlight in vitro cell and tissue culture model systems of increasing complexity that have been used over the past 35 years to study the infectious disease process of P. aeruginosa, mainly focusing on lung models, and their respective advantages and limitations. Continued improvements of in vitro models based on our expanding knowledge of host microenvironmental factors that participate in P. aeruginosa pathogenesis will help advance fundamental understanding of pathogenic mechanisms and increase the translational potential of research findings from bench to the patient's bedside.

摘要

为什么健康人能抵御铜绿假单胞菌感染,而患有囊性纤维化或上皮受损的个体却特别容易受到这种机会致病菌的侵害呢?为了解决这个问题,深入理解宿主微环境与铜绿假单胞菌之间的动态相互作用至关重要。因此,使用能够代表健康和疾病状态下人类黏膜组织关键特征的模型系统,能够以生理相关的方式重现体内宿主-病原体相互作用。在这篇综述中,我们讨论黏膜组织的各种因素,如顶-基底极性、连接复合体、细胞外基质蛋白、黏液、多细胞复杂性(包括原生微生物群)以及其他物理化学因素如何影响铜绿假单胞菌的致病性,因而在体外模拟这些因素很重要。我们着重介绍了在过去35年中用于研究铜绿假单胞菌感染过程的复杂性不断增加的体外细胞和组织培养模型系统,主要聚焦于肺部模型,以及它们各自的优缺点。基于我们对参与铜绿假单胞菌致病性的宿主微环境因素的不断深入了解,持续改进体外模型将有助于推动对致病机制的基础理解,并提高研究结果从实验室到患者床边的转化潜力。

相似文献

1
Mimicking the host and its microenvironment in vitro for studying mucosal infections by Pseudomonas aeruginosa.
Pathog Dis. 2014 Jun;71(1):1-19. doi: 10.1111/2049-632X.12180. Epub 2014 May 23.
2
Which microbial factors really are important in Pseudomonas aeruginosa infections?
Future Microbiol. 2015;10(11):1825-36. doi: 10.2217/fmb.15.100. Epub 2015 Oct 30.
3
Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections.
FEBS Lett. 2016 Nov;590(21):3941-3959. doi: 10.1002/1873-3468.12454. Epub 2016 Nov 1.
4
In Vitro Analysis of Pseudomonas aeruginosa Virulence Using Conditions That Mimic the Environment at Specific Infection Sites.
Prog Mol Biol Transl Sci. 2016;142:151-91. doi: 10.1016/bs.pmbts.2016.05.003. Epub 2016 Aug 8.
5
Pseudomonas aeruginosa: host defence in lung diseases.
Respirology. 2010 Oct;15(7):1037-56. doi: 10.1111/j.1440-1843.2010.01819.x. Epub 2010 Aug 16.
6
Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections.
Am J Respir Cell Mol Biol. 2018 Apr;58(4):428-439. doi: 10.1165/rcmb.2017-0321TR.
7
Multi-Species Biofilms of Methicillin-Resistant and and Their Host Interaction during Colonization of an Otitis Media Rat Model.
Front Cell Infect Microbiol. 2017 Apr 18;7:125. doi: 10.3389/fcimb.2017.00125. eCollection 2017.
10
Novel understandings of host cell mechanisms involved in chronic lung infection: Pseudomonas aeruginosa in the cystic fibrotic lung.
J Infect Public Health. 2019 Mar-Apr;12(2):242-246. doi: 10.1016/j.jiph.2018.10.014. Epub 2018 Nov 17.

引用本文的文献

1
Time-resolved dual transcriptomics of biofilm formation in cystic fibrosis.
Biofilm. 2025 Jul 2;10:100301. doi: 10.1016/j.bioflm.2025.100301. eCollection 2025 Dec.
2
Establishment and characterization of persistent infections in air-liquid interface cultures of human airway epithelial cells.
Infect Immun. 2025 Mar 11;93(3):e0060324. doi: 10.1128/iai.00603-24. Epub 2025 Feb 18.
4
Context-dependent fitness benefits of antibiotic resistance mutations.
Proc Biol Sci. 2024 Aug;291(2027):20241071. doi: 10.1098/rspb.2024.1071. Epub 2024 Jul 24.
5
Antibacterial peptide Reg4 ameliorates -induced pulmonary inflammation and fibrosis.
Microbiol Spectr. 2024 May 2;12(5):e0390523. doi: 10.1128/spectrum.03905-23. Epub 2024 Mar 19.
6
Antibiofilm and antivirulence activities of laminarin-gold nanoparticles in standard and host-mimicking media.
Appl Microbiol Biotechnol. 2024 Feb 13;108(1):203. doi: 10.1007/s00253-024-13050-4.
7
Protective role of CFTR during fungal infection of cystic fibrosis bronchial epithelial cells with .
Front Cell Infect Microbiol. 2023 Aug 23;13:1196581. doi: 10.3389/fcimb.2023.1196581. eCollection 2023.
9
Clinically relevant biofilm models: A need to mimic and recapitulate the host environment.
Biofilm. 2022 Jan 31;4:100069. doi: 10.1016/j.bioflm.2022.100069. eCollection 2022 Dec.

本文引用的文献

1
Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration.
Biomaterials. 2014 Mar;35(9):2664-79. doi: 10.1016/j.biomaterials.2013.11.078. Epub 2014 Jan 8.
2
Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa.
ISME J. 2014 Jun;8(6):1210-20. doi: 10.1038/ismej.2013.232. Epub 2014 Jan 9.
3
Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds.
Tissue Eng Part A. 2014 Jun;20(11-12):1735-46. doi: 10.1089/ten.TEA.2013.0647. Epub 2014 Apr 28.
4
Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections.
Front Cell Infect Microbiol. 2013 Nov 14;3:75. doi: 10.3389/fcimb.2013.00075. eCollection 2013.
5
Potential of host defense peptide prodrugs as neutrophil elastase-dependent anti-infective agents for cystic fibrosis.
Antimicrob Agents Chemother. 2014;58(2):978-85. doi: 10.1128/AAC.01167-13. Epub 2013 Nov 25.
6
Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis.
Expert Rev Respir Med. 2013 Oct;7(5):553-76. doi: 10.1586/17476348.2013.837752.
9
Effect of rhamnolipids on permeability across Caco-2 cell monolayers.
Pharm Res. 2014 Apr;31(4):887-94. doi: 10.1007/s11095-013-1210-5. Epub 2013 Sep 25.
10
Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways.
mBio. 2013 Aug 20;4(4):e00557-13. doi: 10.1128/mBio.00557-13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验