Suppr超能文献

共栖菌的厌氧烃和脂肪酸代谢及其对碳钢腐蚀的影响。

Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion.

机构信息

Department of Microbiology and Plant Biology, Institute for Energy and the Environment, and the OU Biocorrosion Center, University of Oklahoma Norman, OK, USA.

Howard Live Oak, LLC Norman, OK, USA.

出版信息

Front Microbiol. 2014 Apr 1;5:114. doi: 10.3389/fmicb.2014.00114. eCollection 2014.

Abstract

The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

摘要

烃类的微生物代谢与富含硫酸盐的海洋水中碳钢的腐蚀越来越相关。然而,在没有电子受体的情况下,这些转化如何影响金属的生物腐蚀还没有被完全认识到。我们培养了一种利用海洋烷烃、硫酸盐还原菌 Desulfoglaeba alkanexedens,分别以硫酸盐或 Methanospirillum hungatei 作为电子受体,并测试了这些培养物催化金属腐蚀的能力。在无菌条件下,D. alkanexedens 的瞬时腐蚀速率比在与产甲烷菌共生的协同培养物中更高,并且在碳钢试片上产生的蚀坑也更多。由于厌氧烃类生物降解途径集中在脂肪酸中间体上,我们比较了一种已知的脂肪酸氧化协同细菌 Syntrophus aciditrophicus 的腐蚀性,当它在纯培养或与氢利用硫酸盐还原菌(Desulfovibrio sp.,菌株 G11)或产甲烷菌(M. hungatei)共生培养时。培养物中的瞬时腐蚀速率没有显著差异,但硫酸盐还原的共生共培养在试片上产生的蚀坑比其他微生物组合更多。与以氢气作为电子供体培养的同一生物体相比,用乳酸培养的菌株 G11 的瞬时腐蚀速率和试片蚀坑更高。因此,如果硫酸盐可作为电子受体,那么相同的微生物组合会产生硫化物和低分子量有机酸,从而加剧生物腐蚀。尽管存在这些趋势,但在腐蚀评估中还是遇到了相当大的差异。生物量、初始底物浓度、微生物活性或最终产物形成的速率的差异并不能解释这些变化。我们不得不将这些差异归因于试片的冶金性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验