Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen, Germany.
Environ Microbiol. 2012 Jul;14(7):1772-87. doi: 10.1111/j.1462-2920.2012.02778.x. Epub 2012 May 23.
Iron (Fe(0) ) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H(2) S, and scavenge of 'cathodic' H(2) from chemical reaction of Fe(0) with H(2) O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe(0) year(-1) ), while conventional H(2) -scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO(3) , Mg/CaCO(3) ) deposited on the corroding metal exhibited electrical conductivity (50 S m(-1) ). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe(0) → 4Fe(2+) + 8e(-) ) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e(-) + SO(4) (2-) + 9H(+) → HS(-) + 4H(2) O). Hence, anaerobic microbial iron corrosion obviously bypasses H(2) rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments.
在缺氧环境(例如管道内部)中,铁(Fe(0))的腐蚀过程会导致相当大的经济成本,主要受到微生物的影响,特别是硫酸盐还原菌(SRB)。该过程的特征是形成黑色结壳和金属点蚀。该机制通常解释为形成的 H(2) S 的腐蚀性,以及 Fe(0)与 H(2) O 的化学反应中对“阴极”H(2)的清除。在这里,我们研究了特殊的海洋硫酸盐还原菌,它们以金属铁为唯一电子供体进行自养生长。在五个月内,它们降解了高达 72%的铁试片(10 mm×10 mm×1 mm),这是一种技术上非常相关的腐蚀速率(0.7 mm Fe(0) 年(-1)),而传统的 H(2) 清除控制菌株则没有腐蚀性。在腐蚀金属上沉积的黑色、坚硬的矿物结壳(FeS、FeCO(3)、Mg/CaCO(3))表现出导电性(50 S m(-1))。这足以解释通过电子从金属(4Fe(0) → 4Fe(2+) + 8e(-))通过半导体硫化物流向壳层定殖细胞还原硫酸盐(8e(-) + SO(4) (2-) + 9H(+) → HS(-) + 4H(2) O)的电流腐蚀速率。因此,厌氧微生物铁腐蚀显然绕过了 H(2),而不是依赖于它。在沿海海洋沉积物中发现了具有这种腐蚀性潜力的硫酸盐还原菌,数量很高。埋在那里的铁试片被腐蚀并被特征性的矿物结壳覆盖。据推测,厌氧生物腐蚀是由于一种生态生理学上相关的分解代谢特性的滥用以从沉积物中的非生物或生物来源摄取外部电子。