Suppr超能文献

过氧化物酶体多胺氧化酶与 NADPH 氧化酶的交叉对话对于 ROS 稳态的影响,从而影响拟南芥的呼吸速率。

Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana.

机构信息

Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of Crete Heraklion, Greece.

Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology Uppsala, Sweden.

出版信息

Front Plant Sci. 2014 Apr 3;5:132. doi: 10.3389/fpls.2014.00132. eCollection 2014.

Abstract

Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions ([Formula: see text] ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and [Formula: see text] . These results suggest that the ratio of [Formula: see text] /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of [Formula: see text] by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

摘要

活性氧(ROS)在细胞内隔室中的动态平衡至关重要,因为 ROS 与几乎所有细胞过程有关,更重要的是与疾病和衰老有关。多胺(PA)是具有进化保守作用的含氮分子,可调节细胞的代谢和能量状态。最近的证据还表明,多胺(PA)是 ROS 动态平衡的主要调节剂。在拟南芥中,多胺 spermidine(Spd)和 spermine 分别回转为 putrescine 和 Spd 的过程由两个过氧化物酶体 PA 氧化酶(AtPAO)催化。然而,该途径的生理作用在很大程度上仍然难以捉摸。在这里,我们探讨了过氧化物酶体 PA 回转化的作用,特别是高度表达的 AtPAO3 在 ROS 动态平衡和线粒体呼吸爆发调节中的作用。外源性 PA 会依赖 NADPH 氧化酶刺激耗氧量,其中 Spd 产生的影响最强。用 NADPH 氧化酶抑制剂二苯基碘(DPI)处理可减弱这种增加。AtPAO3 基因功能丧失会导致 NADPH 氧化酶依赖性超氧阴离子 ([Formula: see text] ) 产生增加,但 H2O2 不会增加,这会激活线粒体替代氧化酶途径(AOX)。相反,AtPAO3 的过表达会导致 H2O2 和 [Formula: see text] 的产生均增加但平衡。这些结果表明,[Formula: see text] /H2O2 的比值调节线粒体呼吸链,NADPH 氧化酶依赖 PA 产生的 [Formula: see text] 使电子传递链的平衡有利于 AOX 途径。此外,AtPAO3 似乎是 ROS 动态平衡调节模块的重要组成部分,同时讨论了 PA 回转化和 ROS 在不同生物界中的保守作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bb/3982065/63f47c434f8e/fpls-05-00132-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验