Li Guo-Min
Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
DNA Repair (Amst). 2014 Jul;19:48-54. doi: 10.1016/j.dnarep.2014.03.027. Epub 2014 Apr 24.
DNA mismatch repair (MMR) maintains genome stability primarily by repairing DNA replication-associated mispairs. Because loss of MMR function increases the mutation frequency genome-wide, defects in this pathway predispose affected individuals to cancer. The genes encoding essential eukaryotic MMR activities have been identified, as the recombinant proteins repair 'naked' heteroduplex DNA in vitro. However, the reconstituted system is inactive on nucleosome-containing heteroduplex DNA, and it is not understood how MMR occurs in vivo. Recent studies suggest that chromatin organization, nucleosome assembly/disassembly factors and histone modifications regulate MMR in eukaryotic cells, but the complexity and importance of the interaction between MMR and chromatin remodeling has only recently begun to be appreciated. This article reviews recent progress in understanding the mechanism of eukaryotic MMR in the context of chromatin structure and dynamics, considers the implications of these recent findings and discusses unresolved questions and challenges in understanding eukaryotic MMR.
DNA错配修复(MMR)主要通过修复与DNA复制相关的错配来维持基因组稳定性。由于MMR功能的丧失会增加全基因组的突变频率,该途径中的缺陷使受影响个体易患癌症。编码真核生物MMR必需活性的基因已被鉴定出来,因为重组蛋白可在体外修复“裸露的”异源双链DNA。然而,重构系统对含核小体的异源双链DNA无活性,并且尚不清楚MMR在体内是如何发生的。最近的研究表明,染色质组织、核小体组装/拆卸因子和组蛋白修饰在真核细胞中调节MMR,但MMR与染色质重塑之间相互作用的复杂性和重要性直到最近才开始受到重视。本文综述了在染色质结构和动力学背景下理解真核生物MMR机制的最新进展,考虑了这些最新发现的意义,并讨论了在理解真核生物MMR方面尚未解决的问题和挑战。