Suppr超能文献

后生动物中花生四烯酸代谢的祖先遗传复杂性。

Ancestral genetic complexity of arachidonic acid metabolism in Metazoa.

作者信息

Yuan Dongjuan, Zou Qiuqiong, Yu Ting, Song Cuikai, Huang Shengfeng, Chen Shangwu, Ren Zhenghua, Xu Anlong

机构信息

Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.

Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China; Beijing University of Chinese Medicine, 11 Bei San Huang Dong Road, Chao-yang District, Beijing, 100029, People's Republic of China.

出版信息

Biochim Biophys Acta. 2014 Sep;1841(9):1272-84. doi: 10.1016/j.bbalip.2014.04.009. Epub 2014 May 5.

Abstract

Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus.

摘要

类二十烷酸在诱导动物体内复杂且关键的生理过程中发挥着重要作用。动物体内类二十烷酸的生物合成已有广泛报道;然而,无脊椎动物组织中类二十烷酸的产生与脊椎动物显著不同,在某些方面仍不明确。我们首次比较了14种无脊椎动物和3种脊椎动物中参与花生四烯酸(AA)代谢的直系同源物。基于简约性分析,一个复杂的AA代谢系统可能存在于后生动物的共同祖先中,然后通过无脊椎动物谱系进行扩展和多样化。在基部脊索动物文昌鱼中进一步鉴定出了一个主要的类似脊椎动物的通过环氧化酶(COX)、脂氧合酶(LOX)和细胞色素P450(CYP)途径的AA代谢系统。文昌鱼组织中AA代谢酶的表达谱分析和类二十烷酸产生的脂质组学分析支持了我们的推测。因此,我们提出AA代谢网络的原始复杂性随着无脊椎动物的不同谱系而多样化,适应身体结构和生态机会的多样性,并在基部脊索动物文昌鱼中形成了类似脊椎动物的模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验