Wu Shuang, Liu Zhi-Ping, Qiu Xing, Wu Hulin
Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, United States of America.
PLoS One. 2014 May 6;9(5):e95276. doi: 10.1371/journal.pone.0095276. eCollection 2014.
The immune response to viral infection is regulated by an intricate network of many genes and their products. The reverse engineering of gene regulatory networks (GRNs) using mathematical models from time course gene expression data collected after influenza infection is key to our understanding of the mechanisms involved in controlling influenza infection within a host. A five-step pipeline: detection of temporally differentially expressed genes, clustering genes into co-expressed modules, identification of network structure, parameter estimate refinement, and functional enrichment analysis, is developed for reconstructing high-dimensional dynamic GRNs from genome-wide time course gene expression data. Applying the pipeline to the time course gene expression data from influenza-infected mouse lungs, we have identified 20 distinct temporal expression patterns in the differentially expressed genes and constructed a module-based dynamic network using a linear ODE model. Both intra-module and inter-module annotations and regulatory relationships of our inferred network show some interesting findings and are highly consistent with existing knowledge about the immune response in mice after influenza infection. The proposed method is a computationally efficient, data-driven pipeline bridging experimental data, mathematical modeling, and statistical analysis. The application to the influenza infection data elucidates the potentials of our pipeline in providing valuable insights into systematic modeling of complicated biological processes.
对病毒感染的免疫反应由许多基因及其产物构成的复杂网络调控。利用流感感染后收集的时间进程基因表达数据,通过数学模型对基因调控网络(GRNs)进行逆向工程,对于我们理解宿主内控制流感感染所涉及的机制至关重要。我们开发了一个五步流程:检测时间上差异表达的基因、将基因聚类到共表达模块、识别网络结构、细化参数估计以及功能富集分析,用于从全基因组时间进程基因表达数据重建高维动态GRNs。将该流程应用于流感感染小鼠肺部的时间进程基因表达数据,我们在差异表达基因中识别出20种不同的时间表达模式,并使用线性常微分方程模型构建了基于模块的动态网络。我们推断网络的模块内和模块间注释以及调控关系均显示出一些有趣的发现,并且与流感感染后小鼠免疫反应的现有知识高度一致。所提出的方法是一种计算高效、数据驱动的流程,它架起了实验数据、数学建模和统计分析之间的桥梁。将其应用于流感感染数据,阐明了我们的流程在为复杂生物过程的系统建模提供有价值见解方面的潜力。