Suppr超能文献

基于 IBS 的 Haseman-Elston 回归估计全基因组关联研究中复杂性状的遗传力。

Estimating heritability of complex traits from genome-wide association studies using IBS-based Haseman-Elston regression.

机构信息

Queensland Brain Institute, The University of Queensland St. Lucia, QLD, Australia.

出版信息

Front Genet. 2014 Apr 30;5:107. doi: 10.3389/fgene.2014.00107. eCollection 2014.

Abstract

Exploring heritability of complex traits is a central focus of statistical genetics. Among various previously proposed methods to estimate heritability, variance component methods are advantageous when estimating heritability using markers. Due to the high-dimensional nature of data obtained from genome-wide association studies (GWAS) in which genetic architecture is often unknown, the most appropriate heritability estimator model is often unclear. The Haseman-Elston (HE) regression is a variance component method that was initially only proposed for linkage studies. However, this study presents a theoretical basis for a modified HE that models linkage disequilibrium for a quantitative trait, and consequently can be used for GWAS. After replacing identical by descent (IBD) scores with identity by state (IBS) scores, we applied the IBS-based HE regression to single-marker association studies (scenario I) and estimated the variance component using multiple markers (scenario II). In scenario II, we discuss the circumstances in which the HE regression and the mixed linear model are equivalent; the disparity between these two methods is observed when a covariance component exists for the additive variance. When we extended the IBS-based HE regression to case-control studies in a subsequent simulation study, we found that it provided a nearly unbiased estimate of heritability, more precise than that estimated via the mixed linear model. Thus, for the case-control scenario, the HE regression is preferable. GEnetic Analysis Repository (GEAR; http://sourceforge.net/p/gbchen/wiki/GEAR/) software implemented the HE regression method and is freely available.

摘要

探索复杂性状的遗传力是统计遗传学的一个核心关注点。在各种先前提出的用于估计遗传力的方法中,方差分量方法在使用标记估计遗传力时具有优势。由于全基因组关联研究(GWAS)中数据的高维性质,遗传结构通常未知,因此最适合的遗传力估计模型通常不明确。Haseman-Elston(HE)回归是一种方差分量方法,最初仅被提议用于连锁研究。然而,本研究为定量性状的连锁不平衡建立了一种改良的 HE 模型提供了理论基础,因此可以用于 GWAS。在将相同的血缘(IBD)分数替换为相同的状态(IBS)分数后,我们将基于 IBS 的 HE 回归应用于单标记关联研究(方案 I),并使用多个标记估计方差分量(方案 II)。在方案 II 中,我们讨论了 HE 回归和混合线性模型等效的情况;当加性方差存在协方差分量时,这两种方法之间存在差异。当我们在随后的模拟研究中将基于 IBS 的 HE 回归扩展到病例对照研究时,我们发现它提供了遗传力的近无偏估计,比通过混合线性模型估计的更精确。因此,对于病例对照情况,HE 回归是优选的。GEnetic Analysis Repository(GEAR;http://sourceforge.net/p/gbchen/wiki/GEAR/)软件实现了 HE 回归方法,并且是免费提供的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6641/4012219/59cea2b844f6/fgene-05-00107-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验