Sofer Tamar
.
Stat Appl Genet Mol Biol. 2017 Sep 26;16(4):259-273. doi: 10.1515/sagmb-2016-0076.
Heritability is the proportion of phenotypic variance in a population that is attributable to individual genotypes. Heritability is considered an important measure in both evolutionary biology and in medicine, and is routinely estimated and reported in genetic epidemiology studies. In population-based genome-wide association studies (GWAS), mixed models are used to estimate variance components, from which a heritability estimate is obtained. The estimated heritability is the proportion of the model's total variance that is due to the genetic relatedness matrix (kinship measured from genotypes). Current practice is to use bootstrapping, which is slow, or normal asymptotic approximation to estimate the precision of the heritability estimate; however, this approximation fails to hold near the boundaries of the parameter space or when the sample size is small. In this paper we propose to estimate variance components via a Haseman-Elston regression, find the asymptotic distribution of the variance components and proportions of variance, and use them to construct confidence intervals (CIs). Our method is further developed to obtain unbiased variance components estimators and construct CIs by meta-analyzing information from multiple studies. We demonstrate our approach on data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).
遗传力是指群体中可归因于个体基因型的表型方差比例。在进化生物学和医学领域,遗传力都被视为一项重要指标,并且在遗传流行病学研究中经常进行估计和报告。在基于人群的全基因组关联研究(GWAS)中,混合模型用于估计方差成分,进而得到遗传力估计值。估计的遗传力是模型总方差中归因于遗传相关矩阵(从基因型测量的亲缘关系)的比例。当前的做法是使用自展法(这种方法速度较慢)或正态渐近近似来估计遗传力估计值的精度;然而,这种近似在参数空间边界附近或样本量较小时并不成立。在本文中,我们建议通过哈斯曼 - 埃尔斯顿回归来估计方差成分,找到方差成分和方差比例的渐近分布,并利用它们构建置信区间(CI)。我们的方法进一步发展为通过对来自多项研究的信息进行荟萃分析来获得无偏方差成分估计量并构建置信区间。我们在西班牙裔社区健康研究/拉丁裔研究(HCHS/SOL)的数据上展示了我们的方法。