Suppr超能文献

示踪剂到达时间对对比增强首次通过灌注磁共振成像的高分辨率(体素级)心肌灌注图准确性的影响。

Effects of tracer arrival time on the accuracy of high-resolution (voxel-wise) myocardial perfusion maps from contrast-enhanced first-pass perfusion magnetic resonance.

作者信息

Zarinabad Niloufar, Hautvast Gilion L T F, Sammut Eva, Arujuna Aruna, Breeuwer Marcel, Nagel Eike, Chiribiri Amedeo

机构信息

Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas¿ Hospital, London, U.K.

Philips Group Innovation¿Healthcare Incubators, Philips Research High Tech Campus, Eindhoven, AE, The Netherlands.

出版信息

IEEE Trans Biomed Eng. 2014 Sep;61(9):2499-2506. doi: 10.1109/TBME.2014.2322937.

Abstract

First-pass perfusion cardiac magnetic resonance(CMR) allows the quantitative assessment of myocardial blood flow(MBF). However, flow estimates are sensitive to the delay between the arterial and myocardial tissue tracer arrival time (tOnset) and the accurate estimation of MBF relies on the precise identification of tOnset . The aim of this study is to assess the sensitivity of the quantification process to tOnset at voxel level. Perfusion data were obtained from series of simulated data, a hardware perfusion phantom, and patients. Fermi deconvolution has been used for analysis. A novel algorithm, based on sequential deconvolution,which minimizes the error between myocardial curves and fitted curves obtained after deconvolution, has been used to identify the optimal tOnset for each region. Voxel-wise analysis showed to be more sensitive to tOnset compared to segmental analysis. The automated detection of the tOnset allowed a net improvement of the accuracy of MBF quantification and in patients the identification of perfusion abnormalities in territories that were missed when a constant user-selected tOnset was used. Our results indicate that high-resolution MBF quantification should be performed with optimized tOnset values at voxel level.

摘要

首过灌注心脏磁共振成像(CMR)可对心肌血流(MBF)进行定量评估。然而,血流估计对动脉和心肌组织示踪剂到达时间(tOnset)之间的延迟很敏感,准确估计MBF依赖于对tOnset的精确识别。本研究的目的是在体素水平评估量化过程对tOnset的敏感性。灌注数据来自一系列模拟数据、硬件灌注模型和患者。采用费米反卷积进行分析。一种基于顺序反卷积的新算法已被用于识别每个区域的最佳tOnset,该算法可使心肌曲线与反卷积后获得的拟合曲线之间的误差最小化。体素级分析显示,与节段分析相比,其对tOnset更敏感。tOnset的自动检测使MBF量化的准确性得到了显著提高,并且在患者中能够识别出在使用固定的用户选择tOnset时遗漏区域的灌注异常。我们的结果表明,高分辨率MBF量化应在体素水平使用优化的tOnset值进行。

相似文献

3
Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison.
Magn Reson Med. 2012 Dec;68(6):1994-2004. doi: 10.1002/mrm.24195. Epub 2012 Feb 21.
7
Analysis of spatiotemporal fidelity in quantitative 3D first-pass perfusion cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2017 Jan 27;19(1):11. doi: 10.1186/s12968-017-0324-z.
8
Diagnostic Performance of Fully Automated Pixel-Wise Quantitative Myocardial Perfusion Imaging by Cardiovascular Magnetic Resonance.
JACC Cardiovasc Imaging. 2018 May;11(5):697-707. doi: 10.1016/j.jcmg.2018.01.005. Epub 2018 Feb 14.
9
Resting myocardial blood flow is impaired in hibernating myocardium: a magnetic resonance study of quantitative perfusion assessment.
Circulation. 2005 Nov 22;112(21):3289-96. doi: 10.1161/CIRCULATIONAHA.105.549170. Epub 2005 Nov 14.
10
Impact of Temporal Resolution and Methods for Correction on Cardiac Magnetic Resonance Perfusion Quantification.
J Magn Reson Imaging. 2022 Dec;56(6):1707-1719. doi: 10.1002/jmri.28180. Epub 2022 Mar 26.

引用本文的文献

1
3
Impact of the Choice of Native T in Pixelwise Myocardial Blood Flow Quantification.
J Magn Reson Imaging. 2021 Mar;53(3):755-765. doi: 10.1002/jmri.27375. Epub 2020 Oct 8.
4
Quantitative imaging: systematic review of perfusion/flow phantoms.
Eur Radiol Exp. 2020 Mar 4;4(1):15. doi: 10.1186/s41747-019-0133-2.
6
Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance.
JACC Cardiovasc Imaging. 2018 May;11(5):686-694. doi: 10.1016/j.jcmg.2017.07.022. Epub 2017 Nov 15.
7
Analysis of spatiotemporal fidelity in quantitative 3D first-pass perfusion cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2017 Jan 27;19(1):11. doi: 10.1186/s12968-017-0324-z.
10
Perfusion dyssynchrony analysis.
Eur Heart J Cardiovasc Imaging. 2016 Dec;17(12):1414-1423. doi: 10.1093/ehjci/jev326. Epub 2015 Dec 24.

本文引用的文献

2
Myocardial blood flow quantification from MRI by deconvolution using an exponential approximation basis.
IEEE Trans Biomed Eng. 2012 Jul;59(7):2060-7. doi: 10.1109/TBME.2012.2197620. Epub 2012 May 3.
4
Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison.
Magn Reson Med. 2012 Dec;68(6):1994-2004. doi: 10.1002/mrm.24195. Epub 2012 Feb 21.
6
Quantitative analysis of transmural gradients in myocardial perfusion magnetic resonance images.
Magn Reson Med. 2011 Nov;66(5):1477-87. doi: 10.1002/mrm.22930. Epub 2011 May 31.
8
Noise measurement from magnitude MRI using local estimates of variance and skewness.
Phys Med Biol. 2010 Aug 21;55(16):N441-9. doi: 10.1088/0031-9155/55/16/N02. Epub 2010 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验