Suppr超能文献

在视网膜前或视网膜下刺激期间同时记录小鼠视网膜神经节细胞。

Simultaneous recording of mouse retinal ganglion cells during epiretinal or subretinal stimulation.

作者信息

Sim S L, Szalewski R J, Johnson L J, Akah L E, Shoemaker L E, Thoreson W B, Margalit E

机构信息

Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA.

Naval Research Laboratory, Washington, DC, USA.

出版信息

Vision Res. 2014 Aug;101:41-50. doi: 10.1016/j.visres.2014.05.005. Epub 2014 May 23.

Abstract

We compared response patterns and electrical receptive fields (ERF) of retinal ganglion cells (RGCs) during epiretinal and subretinal electrical stimulation of isolated mouse retina. Retinas were stimulated with an array of 3200 independently controllable electrodes. Four response patterns were observed: a burst of activity immediately after stimulation (Type I cells, Vision Research (2008), 48, 1562-1568), delayed bursts beginning >25ms after stimulation (Type II), a combination of both (Type III), and inhibition of ongoing spike activity. Type I responses were produced more often by epiretinal than subretinal stimulation whereas delayed and inhibitory responses were evoked more frequently by subretinal stimulation. Response latencies were significantly shorter with epiretinal than subretinal stimulation. These data suggest that subretinal stimulation is more effective at activating intraretinal circuits than epiretinal stimulation. There was no significant difference in charge threshold between subretinal and epiretinal configurations. ERFs were defined by the stimulating array surface area that successfully stimulated spikes in an RGC. ERFs were complex in shape, similar to receptive fields mapped with light. ERF areas were significantly smaller with subretinal than epiretinal stimulation. This may reflect the greater distance between stimulating electrodes and RGCs in the subretinal configuration. ERFs for immediate and delayed responses mapped within the same Type III cells differed in shape and size, consistent with different sites and mechanisms for generating these two response types.

摘要

我们比较了在对分离的小鼠视网膜进行视网膜上和视网膜下电刺激期间视网膜神经节细胞(RGCs)的反应模式和电感受野(ERF)。用一个由3200个独立可控电极组成的阵列对视网膜进行刺激。观察到四种反应模式:刺激后立即出现的一阵活动(I型细胞,《视觉研究》(2008年),48卷,1562 - 1568页),刺激开始>25毫秒后开始的延迟爆发(II型),两者的组合(III型),以及对正在进行的尖峰活动的抑制。I型反应在视网膜上刺激时比在视网膜下刺激时更常产生,而延迟和抑制性反应在视网膜下刺激时更频繁地被诱发。视网膜上刺激的反应潜伏期明显短于视网膜下刺激。这些数据表明,视网膜下刺激在激活视网膜内回路方面比视网膜上刺激更有效。视网膜下和视网膜上配置之间的电荷阈值没有显著差异。ERF由成功刺激RGC中尖峰的刺激阵列表面积定义。ERF的形状复杂,类似于用光映射的感受野。视网膜下刺激时的ERF面积明显小于视网膜上刺激时。这可能反映了视网膜下配置中刺激电极与RGC之间的距离更大。在同一III型细胞中映射的即时和延迟反应的ERF在形状和大小上有所不同,这与产生这两种反应类型的不同部位和机制一致。

相似文献

1
Simultaneous recording of mouse retinal ganglion cells during epiretinal or subretinal stimulation.
Vision Res. 2014 Aug;101:41-50. doi: 10.1016/j.visres.2014.05.005. Epub 2014 May 23.
2
Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode.
Exp Eye Res. 2006 Aug;83(2):367-73. doi: 10.1016/j.exer.2006.01.012. Epub 2006 Apr 17.
3
Activation of ganglion cells in wild-type and P23H rat retinas with a small subretinal electrode.
Exp Eye Res. 2012 Jun;99:71-7. doi: 10.1016/j.exer.2012.03.016. Epub 2012 Apr 20.
4
Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array.
J Neurophysiol. 2012 May;107(10):2742-55. doi: 10.1152/jn.00909.2011. Epub 2012 Feb 22.
6
Stimulation strategies for selective activation of retinal ganglion cell soma and threshold reduction.
J Neural Eng. 2019 Apr;16(2):026017. doi: 10.1088/1741-2552/aaf92b. Epub 2018 Dec 18.
7
Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
J Neurophysiol. 2006 Jun;95(6):3311-27. doi: 10.1152/jn.01168.2005. Epub 2006 Jan 25.
8
Activation of ganglion cells and axon bundles using epiretinal electrical stimulation.
J Neurophysiol. 2017 Sep 1;118(3):1457-1471. doi: 10.1152/jn.00750.2016. Epub 2017 May 31.

引用本文的文献

1
A novel GCaMP6f-RCS rat model for studying electrical stimulation in the degenerated retina.
Front Cell Dev Biol. 2024 Apr 22;12:1386141. doi: 10.3389/fcell.2024.1386141. eCollection 2024.
2
Electronic Retinal Prostheses.
Cold Spring Harb Perspect Med. 2023 Aug 1;13(8):a041525. doi: 10.1101/cshperspect.a041525.
3
Minimizing Iridium Oxide Electrodes for High Visual Acuity Subretinal Stimulation.
eNeuro. 2021 Dec 23;8(6). doi: 10.1523/ENEURO.0506-20.2021. Print 2021 Nov-Dec.
4
Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing.
Front Neurosci. 2021 Apr 12;15:658703. doi: 10.3389/fnins.2021.658703. eCollection 2021.
5
The functional characteristics of optogenetic gene therapy for vision restoration.
Cell Mol Life Sci. 2021 Feb;78(4):1597-1613. doi: 10.1007/s00018-020-03597-6. Epub 2020 Jul 29.
6
Photogenerated Electrical Fields for Biomedical Applications.
Front Bioeng Biotechnol. 2018 Nov 9;6:167. doi: 10.3389/fbioe.2018.00167. eCollection 2018.
7
Electronic approaches to restoration of sight.
Rep Prog Phys. 2016 Sep;79(9):096701. doi: 10.1088/0034-4885/79/9/096701. Epub 2016 Aug 9.
8
9
A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.
PLoS Comput Biol. 2016 Apr 1;12(4):e1004849. doi: 10.1371/journal.pcbi.1004849. eCollection 2016 Apr.

本文引用的文献

1
Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS.
Proc Biol Sci. 2013 Feb 20;280(1757):20130077. doi: 10.1098/rspb.2013.0077. Print 2013 Apr 22.
2
Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array.
J Neurophysiol. 2012 May;107(10):2742-55. doi: 10.1152/jn.00909.2011. Epub 2012 Feb 22.
3
Artificial vision through neuronal stimulation.
Neurosci Lett. 2012 Jun 25;519(2):122-8. doi: 10.1016/j.neulet.2012.01.063. Epub 2012 Feb 3.
4
Interim results from the international trial of Second Sight's visual prosthesis.
Ophthalmology. 2012 Apr;119(4):779-88. doi: 10.1016/j.ophtha.2011.09.028. Epub 2012 Jan 11.
5
Inner and outer retinal mechanisms engaged by epiretinal stimulation in normal and rd mice.
Vis Neurosci. 2011 Mar;28(2):145-54. doi: 10.1017/S0952523810000489.
6
Functional connectivity in the retina at the resolution of photoreceptors.
Nature. 2010 Oct 7;467(7316):673-7. doi: 10.1038/nature09424.
7
Direct activation of retinal ganglion cells with subretinal stimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:618-21. doi: 10.1109/IEMBS.2009.5333494.
8
Spatiotemporal aspects of pulsed electrical stimuli on the responses of rabbit retinal ganglion cells.
Exp Eye Res. 2009 Dec;89(6):972-9. doi: 10.1016/j.exer.2009.08.015. Epub 2009 Sep 17.
9
Loss of responses to visual but not electrical stimulation in ganglion cells of rats with severe photoreceptor degeneration.
J Neurophysiol. 2009 Dec;102(6):3260-9. doi: 10.1152/jn.00663.2009. Epub 2009 Sep 2.
10
Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
Prog Brain Res. 2009;175:317-32. doi: 10.1016/S0079-6123(09)17522-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验