Eley John Gordon, Newhauser Wayne David, Lüchtenborg Robert, Graeff Christian, Bert Christoph
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, TX, 77030, USA.
Phys Med Biol. 2014 Jul 7;59(13):3431-52. doi: 10.1088/0031-9155/59/13/3431. Epub 2014 Jun 3.
Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.
为了让扫描离子束疗法对移动肿瘤患者的理论优势得以充分发挥,需要采取运动减缓策略。本研究的目的是确定与现有的三维(3D)优化束流跟踪方法相比,一种用于扫描离子束跟踪的新的四维(4D)优化方法在保持靶区剂量覆盖的同时,是否能够降低移动靶区附近避让体积的剂量。我们使用一个简单的4D几何体模和一个复杂的解剖体模(即一名肺癌患者胸部的4D计算机断层扫描图像)通过计算对这些方法进行了测试。我们还使用电动薄膜体模对碳离子束进行测量,以验证我们的研究结果。相对于3D优化束流跟踪,4D优化束流跟踪在简单体模中将预测的避让体积最大剂量降低了53%,在胸部体模中降低了13%。4D优化束流跟踪在简单体模中提供了相似的靶区剂量均匀性(靶区剂量标准差为0.4%对0.3%),而在胸部体模中具有显著更优的均匀性(D5-D95为1.9%对38.7%)。测量结果表明,4D优化束流跟踪的实施在技术上是可行的,并且证实与3D优化束流跟踪相比,避让区域的最大薄膜曝光量降低了42%。总之,我们发现与3D优化束流跟踪相比,4D优化束流跟踪在保持靶区剂量覆盖的同时,能够降低移动靶区附近避让体积的最大剂量。