The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom.
PLoS Comput Biol. 2013;9(7):e1003157. doi: 10.1371/journal.pcbi.1003157. Epub 2013 Jul 25.
In systems biology, questions concerning the molecular and cellular makeup of an organism are of utmost importance, especially when trying to understand how unreliable components--like genetic circuits, biochemical cascades, and ion channels, among others--enable reliable and adaptive behaviour. The repertoire and speed of biological computations are limited by thermodynamic or metabolic constraints: an example can be found in neurons, where fluctuations in biophysical states limit the information they can encode--with almost 20-60% of the total energy allocated for the brain used for signalling purposes, either via action potentials or by synaptic transmission. Here, we consider the imperatives for neurons to optimise computational and metabolic efficiency, wherein benefits and costs trade-off against each other in the context of self-organised and adaptive behaviour. In particular, we try to link information theoretic (variational) and thermodynamic (Helmholtz) free-energy formulations of neuronal processing and show how they are related in a fundamental way through a complexity minimisation lemma.
在系统生物学中,有关生物体的分子和细胞组成的问题至关重要,尤其是在试图理解如何使不可靠的组件(如遗传电路、生化级联和离子通道等)能够实现可靠和适应性的行为时。生物计算的范围和速度受到热力学或代谢限制的限制:一个例子可以在神经元中找到,其中生物物理状态的波动限制了它们可以编码的信息 - 大约 20-60%的大脑总能量用于信号传递,无论是通过动作电位还是通过突触传递。在这里,我们考虑了神经元优化计算和代谢效率的必要性,其中在自组织和适应性行为的背景下,收益和成本相互权衡。特别是,我们试图将信息论(变分)和热力学(亥姆霍兹)自由能形式的神经元处理联系起来,并通过一个复杂性最小化引理展示它们是如何以基本方式相关的。