Suppr超能文献

通过使用硅衬底微加工技术改变界面和堆叠方式实现外延石墨烯的微观调控能带结构。

Microscopically-tuned band structure of epitaxial graphene through interface and stacking variations using Si substrate microfabrication.

作者信息

Fukidome Hirokazu, Ide Takayuki, Kawai Yusuke, Shinohara Toshihiro, Nagamura Naoka, Horiba Koji, Kotsugi Masato, Ohkochi Takuo, Kinoshita Toyohiko, Kumighashira Hiroshi, Oshima Masaharu, Suemitsu Maki

机构信息

1] Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aobaku-ku, Sendai, Miyagi 980-8577, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5-7, Goban-cho, Chiyoda-ku, Tokyo 102-0076, Japan.

Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aobaku-ku, Sendai, Miyagi 980-8577, Japan.

出版信息

Sci Rep. 2014 Jun 6;4:5173. doi: 10.1038/srep05173.

Abstract

Graphene exhibits unusual electronic properties, caused by a linear band structure near the Dirac point. This band structure is determined by the stacking sequence in graphene multilayers. Here we present a novel method of microscopically controlling the band structure. This is achieved by epitaxy of graphene on 3C-SiC(111) and 3C-SiC(100) thin films grown on a 3D microfabricated Si(100) substrate (3D-GOS (graphene on silicon)) by anisotropic etching, which produces Si(111) microfacets as well as major Si(100) microterraces. We show that tuning of the interface between the graphene and the 3C-SiC microfacets enables microscopic control of stacking and ultimately of the band structure of 3D-GOS, which is typified by the selective emergence of semiconducting and metallic behaviours on the (111) and (100) portions, respectively. The use of 3D-GOS is thus effective in microscopically unlocking various potentials of graphene depending on the application target, such as electronic or photonic devices.

摘要

石墨烯呈现出非同寻常的电子特性,这是由狄拉克点附近的线性能带结构引起的。这种能带结构由石墨烯多层膜中的堆叠顺序决定。在此,我们展示了一种微观控制能带结构的新方法。这是通过在经各向异性蚀刻在三维微加工的硅(100)衬底(三维石墨烯/硅(3D-GOS))上生长的3C-SiC(111)和3C-SiC(100)薄膜上外延生长石墨烯来实现的,这种蚀刻会产生Si(111)微面以及主要的Si(100)微平台。我们表明,调节石墨烯与3C-SiC微面之间的界面能够实现对堆叠的微观控制,并最终控制三维石墨烯/硅(3D-GOS)的能带结构,其典型特征是在(111)和(100)部分分别选择性地出现半导体和金属行为。因此,根据应用目标,如电子或光子器件,使用三维石墨烯/硅(3D-GOS)能有效地微观释放石墨烯的各种潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43ea/4047530/3205fd1af616/srep05173-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验