Suppr超能文献

3C-SiC(100)/Si(100)衬底上外延石墨烯的结构和电子性质研究。

Investigation of structural and electronic properties of epitaxial graphene on 3C-SiC(100)/Si(100) substrates.

作者信息

Gogneau Noelle, Ben Gouider Trabelsi Amira, Silly Mathieu G, Ridene Mohamed, Portail Marc, Michon Adrien, Oueslati Mehrezi, Belkhou Rachid, Sirotti Fausto, Ouerghi Abdelkarim

机构信息

Laboratoire de Photonique et de Nanostructures, Centre National de la Recherche Scientifique, Marcoussis, France.

Unité des Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Université de Tunis El Manar Campus Universitaire, Tunis, Tunisia.

出版信息

Nanotechnol Sci Appl. 2014 Sep 27;7:85-95. doi: 10.2147/NSA.S60324. eCollection 2014.

Abstract

Graphene has been intensively studied in recent years in order to take advantage of its unique properties. Its synthesis on SiC substrates by solid-state graphitization appears a suitable option for graphene-based electronics. However, before developing devices based on epitaxial graphene, it is desirable to understand and finely control the synthesis of material with the most promising properties. To achieve these prerequisites, many studies are being conducted on various SiC substrates. Here, we review 3C-SiC(100) epilayers grown by chemical vapor deposition on Si(100) substrates for producing graphene by solid state graphitization under ultrahigh-vacuum conditions. Based on various characterization techniques, the structural and electrical properties of epitaxial graphene layer grown on 3C-SiC(100)/Si(100) are discussed. We establish that epitaxial graphene presents properties similar to those obtained using hexagonal SiC substrates, with the advantage of being compatible with current Si-processing technology.

摘要

近年来,人们对石墨烯进行了深入研究,以利用其独特性能。通过固态石墨化在碳化硅(SiC)衬底上合成石墨烯似乎是基于石墨烯的电子学的一个合适选择。然而,在开发基于外延石墨烯的器件之前,有必要了解并精细控制具有最有前景性能的材料的合成。为了满足这些先决条件,人们正在对各种碳化硅衬底进行大量研究。在此,我们综述了通过化学气相沉积在硅(Si)(100)衬底上生长的3C-SiC(100)外延层,用于在超高真空条件下通过固态石墨化制备石墨烯。基于各种表征技术,讨论了在3C-SiC(100)/Si(100)上生长的外延石墨烯层的结构和电学性质。我们确定,外延石墨烯具有与使用六方碳化硅衬底获得的性能相似的特性,其优点是与当前的硅加工技术兼容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a08a/4203311/7d148ca7f09d/nsa-7-085Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验