Suppr超能文献

为什么同等对待并不总是公平的:在成本效益建模中现有种族健康不平等的影响。

Why equal treatment is not always equitable: the impact of existing ethnic health inequalities in cost-effectiveness modeling.

机构信息

Department of Public Health, University of Otago Wellington, PO Box 7343 23 Mein Street, Newtown Wellington, New Zealand.

出版信息

Popul Health Metr. 2014 Jun 2;12:15. doi: 10.1186/1478-7954-12-15. eCollection 2014.

Abstract

BACKGROUND

A critical first step toward incorporating equity into cost-effectiveness analyses is to appropriately model interventions by population subgroups. In this paper we use a standardized treatment intervention to examine the impact of using ethnic-specific (Māori and non-Māori) data in cost-utility analyses for three cancers.

METHODS

We estimate gains in health-adjusted life years (HALYs) for a simple intervention (20% reduction in excess cancer mortality) for lung, female breast, and colon cancers, using Markov modeling. Base models include ethnic-specific cancer incidence with other parameters either turned off or set to non-Māori levels for both groups. Subsequent models add ethnic-specific cancer survival, morbidity, and life expectancy. Costs include intervention and downstream health system costs.

RESULTS

For the three cancers, including existing inequalities in background parameters (population mortality and comorbidities) for Māori attributes less value to a year of life saved compared to non-Māori and lowers the relative health gains for Māori. In contrast, ethnic inequalities in cancer parameters have less predictable effects. Despite Māori having higher excess mortality from all three cancers, modeled health gains for Māori were less from the lung cancer intervention than for non-Māori but higher for the breast and colon interventions.

CONCLUSIONS

Cost-effectiveness modeling is a useful tool in the prioritization of health services. But there are important (and sometimes counterintuitive) implications of including ethnic-specific background and disease parameters. In order to avoid perpetuating existing ethnic inequalities in health, such analyses should be undertaken with care.

摘要

背景

将公平性纳入成本效益分析的关键第一步是通过人群亚组适当建模干预措施。在本文中,我们使用标准化治疗干预措施,来考察在三种癌症的成本效用分析中使用特定族裔(毛利人和非毛利人)数据的影响。

方法

我们使用马尔可夫模型来估计简单干预措施(癌症死亡率降低 20%)对肺癌、女性乳腺癌和结肠癌的健康调整生命年(HALYs)的收益。基本模型包括特定族裔的癌症发病率,而其他参数要么关闭,要么设定为两组的非毛利人水平。后续模型增加了特定族裔的癌症生存、发病率和预期寿命。成本包括干预措施和下游卫生系统成本。

结果

对于这三种癌症,包括毛利人属性的背景参数(人口死亡率和合并症)中现有的不平等,与非毛利人相比,对挽救一年生命的评价较低,从而降低了毛利人相对健康收益。相比之下,癌症参数中的族裔不平等具有更不可预测的影响。尽管毛利人死于这三种癌症的超额死亡率都较高,但模型预测毛利人从肺癌干预中获得的健康收益低于非毛利人,而从乳腺癌和结肠癌干预中获得的健康收益则更高。

结论

成本效益建模是优先考虑卫生服务的有用工具。但是,纳入特定族裔的背景和疾病参数会产生重要的(有时是违反直觉的)影响。为了避免在健康方面延续现有的族裔不平等,此类分析应谨慎进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a858/4047777/162d464468c5/1478-7954-12-15-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验