Tobacco Control Unit, Cancer Prevention and Control Program, Institut Català d'Oncologia, Av. Granvia de l'Hospitalet, 08908 L'Hospitalet de Llobregat, 199-203 Barcelona, Spain; Cancer Prevention and Control Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Biostatistics Unit, Department of Basic Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
Tobacco Control Unit, Cancer Prevention and Control Program, Institut Català d'Oncologia, Av. Granvia de l'Hospitalet, 08908 L'Hospitalet de Llobregat, 199-203 Barcelona, Spain; Cancer Prevention and Control Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain.
Environ Res. 2014 Aug;133:111-6. doi: 10.1016/j.envres.2014.05.013. Epub 2014 Jun 7.
We assessed and characterized the relationship among biomarkers of secondhand smoke (SHS) exposure in non-smokers according to their exposure at home as measured by airborne markers.
We conducted an observational study on exposure to SHS at home using airborne markers (nicotine and benzene) and biomarkers from the non-smokers living in these homes. We selected 49 non-smoking volunteers from different homes: 25 non-smokers living with at least one smoker and 24 non-smokers living in smoke-free homes. We installed two passive devices to measure nicotine and benzene concentrations in the main room of the house (i.e., the living room). One week later, the researcher returned to the volunteer's home to collect the two devices, obtain saliva and urine samples, and administer a SHS questionnaire.
Salivary and urinary cotinine concentrations highly correlated with air nicotine concentrations measured at the volunteers'homes (rsp=0.738 and rsp=0.679, respectively). The concentrations of airborne markers of SHS and biomarkers in non-smokers increased with increasing self-reported intensity and duration of SHS exposure at home during the previous week (p<0.05). The multivariable regression model showed a significant association with nicotine in air at home (β=0.126, p=0.002 for saliva and β=0.115, p=0.010 for urine).
Our findings suggest that, even in countries with comprehensive smoke-free legislation, exposure to SHS at home continues to be the main source of exposure for non-smokers who live in non-smoke-free homes. Therefore, public health policies should promote smoke-free homes.
我们根据家中空气中的标志物来评估和描述非吸烟者中二手烟(SHS)暴露的生物标志物之间的关系,这些标志物反映了他们在家中的暴露情况。
我们使用空气中的标志物(尼古丁和苯)和来自居住在这些家庭中的非吸烟者的生物标志物,对家中的 SHS 暴露进行了一项观察性研究。我们从不同家庭中选择了 49 名不吸烟的志愿者:25 名不吸烟者与至少一名吸烟者同住,24 名不吸烟者居住在无烟家庭中。我们在房子的主房间(即客厅)安装了两个被动设备来测量尼古丁和苯的浓度。一周后,研究人员返回志愿者家中收集两个设备,获取唾液和尿液样本,并进行 SHS 问卷调查。
唾液和尿液中的可替宁浓度与在家中测量的空气尼古丁浓度高度相关(rsp=0.738 和 rsp=0.679)。空气中 SHS 的标志物浓度和非吸烟者的生物标志物浓度随着上周自我报告的 SHS 暴露在家中的强度和持续时间的增加而增加(p<0.05)。多变量回归模型显示与家中空气中的尼古丁有显著关联(β=0.126,p=0.002 用于唾液,β=0.115,p=0.010 用于尿液)。
我们的研究结果表明,即使在有全面无烟立法的国家,非吸烟者在家中接触 SHS 仍然是他们在非无烟家庭中接触 SHS 的主要来源。因此,公共卫生政策应促进无烟家庭。