Suppr超能文献

通过催化和非催化残基的共进化网络控制催化效率。

Control of catalytic efficiency by a coevolving network of catalytic and noncatalytic residues.

机构信息

Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada N6A 5C1.

Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada N6A 5C1

出版信息

Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):E2376-83. doi: 10.1073/pnas.1322352111. Epub 2014 May 27.

Abstract

The active sites of enzymes consist of residues necessary for catalysis and structurally important noncatalytic residues that together maintain the architecture and function of the active site. Examples of evolutionary interactions between catalytic and noncatalytic residues have been difficult to define and experimentally validate due to a general intolerance of these residues to substitution. Here, using computational methods to predict coevolving residues, we identify a network of positions consisting of two catalytic metal-binding residues and two adjacent noncatalytic residues in LAGLIDADG homing endonucleases (LHEs). Distinct combinations of the four residues in the network map to distinct LHE subfamilies, with a striking distribution of the metal-binding Asp (D) and Glu (E) residues. Mutation of these four positions in three LHEs--I-LtrI, I-OnuI, and I-HjeMI--indicate that the combinations of residues tolerated are specific to each enzyme. Kinetic analyses under single-turnover conditions revealed that I-LtrI activity could be modulated over an ∼100-fold range by mutation of residues in the coevolving network. I-LtrI catalytic site variants with low activity could be rescued by compensatory mutations at adjacent noncatalytic sites that restore an optimal coevolving network and vice versa. Our results demonstrate that LHE activity is constrained by an evolutionary barrier of residues with strong context-dependent effects. Creation of optimal coevolving active-site networks is therefore an important consideration in engineering of LHEs and other enzymes.

摘要

酶的活性部位由催化所需的残基和结构上重要的非催化残基组成,这些残基共同维持活性部位的结构和功能。由于这些残基普遍不能被取代,因此很难定义和实验验证催化残基和非催化残基之间的进化相互作用的例子。在这里,我们使用计算方法预测共同进化的残基,确定了 LAGLIDADG 内切核酸酶(LHEs)中由两个催化金属结合残基和两个相邻非催化残基组成的位置网络。网络中的四个残基的不同组合映射到不同的 LHE 亚家族,金属结合的天冬氨酸(D)和谷氨酸(E)残基的分布引人注目。网络中四个位置的突变发生在三个 LHEs——I-LtrI、I-OnuI 和 I-HjeMI——中,表明耐受的残基组合是每个酶特有的。在单轮条件下的动力学分析表明,通过突变共同进化网络中的残基,I-LtrI 的活性可以在约 100 倍的范围内进行调节。具有低活性的 I-LtrI 催化位点变体可以通过在相邻非催化位点进行补偿性突变来挽救,从而恢复最佳的共同进化网络,反之亦然。我们的结果表明,LHE 的活性受到具有强烈上下文依赖性效应的残基进化障碍的限制。因此,创建最佳的共同进化活性部位网络是工程 LHE 和其他酶的重要考虑因素。

相似文献

引用本文的文献

6
Naught all zeros in sequence count data are the same.序列计数数据中的零并非都相同。
Comput Struct Biotechnol J. 2020 Sep 28;18:2789-2798. doi: 10.1016/j.csbj.2020.09.014. eCollection 2020.
7
omicplotR: visualizing omic datasets as compositions.omicplotR:将组学数据集可视化表示为成分。
BMC Bioinformatics. 2019 Nov 15;20(1):580. doi: 10.1186/s12859-019-3174-x.

本文引用的文献

2
Causes and effects of N-terminal codon bias in bacterial genes.细菌基因 N 末端密码子偏好性的原因和影响。
Science. 2013 Oct 25;342(6157):475-9. doi: 10.1126/science.1241934. Epub 2013 Sep 26.
4
MISTIC: Mutual information server to infer coevolution.MISTIC:互信息服务器推断共进化。
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W8-14. doi: 10.1093/nar/gkt427. Epub 2013 May 28.
5
Emerging methods in protein co-evolution.蛋白质共进化的新兴方法。
Nat Rev Genet. 2013 Apr;14(4):249-61. doi: 10.1038/nrg3414. Epub 2013 Mar 5.
9
Tapping natural reservoirs of homing endonucleases for targeted gene modification.利用天然归巢内切酶库进行靶向基因修饰。
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13077-82. doi: 10.1073/pnas.1107719108. Epub 2011 Jul 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验