Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada N6A 5C1.
Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada N6A 5C1
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):E2376-83. doi: 10.1073/pnas.1322352111. Epub 2014 May 27.
The active sites of enzymes consist of residues necessary for catalysis and structurally important noncatalytic residues that together maintain the architecture and function of the active site. Examples of evolutionary interactions between catalytic and noncatalytic residues have been difficult to define and experimentally validate due to a general intolerance of these residues to substitution. Here, using computational methods to predict coevolving residues, we identify a network of positions consisting of two catalytic metal-binding residues and two adjacent noncatalytic residues in LAGLIDADG homing endonucleases (LHEs). Distinct combinations of the four residues in the network map to distinct LHE subfamilies, with a striking distribution of the metal-binding Asp (D) and Glu (E) residues. Mutation of these four positions in three LHEs--I-LtrI, I-OnuI, and I-HjeMI--indicate that the combinations of residues tolerated are specific to each enzyme. Kinetic analyses under single-turnover conditions revealed that I-LtrI activity could be modulated over an ∼100-fold range by mutation of residues in the coevolving network. I-LtrI catalytic site variants with low activity could be rescued by compensatory mutations at adjacent noncatalytic sites that restore an optimal coevolving network and vice versa. Our results demonstrate that LHE activity is constrained by an evolutionary barrier of residues with strong context-dependent effects. Creation of optimal coevolving active-site networks is therefore an important consideration in engineering of LHEs and other enzymes.
酶的活性部位由催化所需的残基和结构上重要的非催化残基组成,这些残基共同维持活性部位的结构和功能。由于这些残基普遍不能被取代,因此很难定义和实验验证催化残基和非催化残基之间的进化相互作用的例子。在这里,我们使用计算方法预测共同进化的残基,确定了 LAGLIDADG 内切核酸酶(LHEs)中由两个催化金属结合残基和两个相邻非催化残基组成的位置网络。网络中的四个残基的不同组合映射到不同的 LHE 亚家族,金属结合的天冬氨酸(D)和谷氨酸(E)残基的分布引人注目。网络中四个位置的突变发生在三个 LHEs——I-LtrI、I-OnuI 和 I-HjeMI——中,表明耐受的残基组合是每个酶特有的。在单轮条件下的动力学分析表明,通过突变共同进化网络中的残基,I-LtrI 的活性可以在约 100 倍的范围内进行调节。具有低活性的 I-LtrI 催化位点变体可以通过在相邻非催化位点进行补偿性突变来挽救,从而恢复最佳的共同进化网络,反之亦然。我们的结果表明,LHE 的活性受到具有强烈上下文依赖性效应的残基进化障碍的限制。因此,创建最佳的共同进化活性部位网络是工程 LHE 和其他酶的重要考虑因素。