Hosseinizadeh A, Schwander P, Dashti A, Fung R, D'Souza R M, Ourmazd A
Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211, USA.
Department of Mechanical Engineering, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211, USA.
Philos Trans R Soc Lond B Biol Sci. 2014 Jul 17;369(1647):20130326. doi: 10.1098/rstb.2013.0326.
The advent of the X-ray free-electron laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date and provides a potentially powerful alternative route for analysis of data from crystalline and nano-crystalline objects.
X射线自由电子激光(XFEL)的出现使得在辐射损伤发生之前记录注入X射线束中的生物实体的衍射快照成为可能。然后必须使用算法手段来确定快照的方向,从而确定物体的三维结构。现有的贝叶斯方法在重建分辨率上通常限制为物体直径的1/10,并且计算成本随着直径与分辨率之比的八次方增加。我们提出了一种能够利用物体对称性来高分辨率恢复三维结构的方法,从而将卫星烟草坏死病毒的结构重建到原子水平。我们的方法为XFEL快照提供了迄今为止最高的重建分辨率,并为分析来自晶体和纳米晶体物体的数据提供了一条潜在的强大替代途径。