Suppr超能文献

植物代谢工程的主要应用。

Key applications of plant metabolic engineering.

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California, United States of America.

Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America.

出版信息

PLoS Biol. 2014 Jun 10;12(6):e1001879. doi: 10.1371/journal.pbio.1001879. eCollection 2014 Jun.

Abstract

Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field.

摘要

在过去的二十年中,植物代谢工程取得了重大进展,其中包括“金色大米”在内的一些显著成功案例。在这里,我们讨论了该领域在解决四个长期存在的挑战方面的进展:创建能够满足自身氮需求的植物,从而减少或消除对氮肥的需求;提高作物的营养成分;通过引入自毁木质素来设计易于获取可发酵糖的生物燃料原料;以及提高光合作用效率。我们还展望了该领域未来的新兴研究领域。

相似文献

1
Key applications of plant metabolic engineering.
PLoS Biol. 2014 Jun 10;12(6):e1001879. doi: 10.1371/journal.pbio.1001879. eCollection 2014 Jun.
2
Engineering nitrogen and carbon fixation for next-generation plants.
Curr Opin Plant Biol. 2025 Jun;85:102699. doi: 10.1016/j.pbi.2025.102699. Epub 2025 Mar 8.
3
Engineering photosynthesis in plants and synthetic microorganisms.
J Exp Bot. 2013 Jan;64(3):743-51. doi: 10.1093/jxb/ers263. Epub 2012 Oct 1.
4
Biofuel and energy crops: high-yield Saccharinae take center stage in the post-genomics era.
Genome Biol. 2013 Jun 27;14(6):210. doi: 10.1186/gb-2013-14-6-210.
5
Engineering nitrogen use efficient crop plants: the current status.
Plant Biotechnol J. 2012 Dec;10(9):1011-25. doi: 10.1111/j.1467-7652.2012.00700.x. Epub 2012 May 18.
6
Engineering C4 photosynthesis into C3 chassis in the synthetic biology age.
Plant J. 2016 Jul;87(1):51-65. doi: 10.1111/tpj.13155. Epub 2016 Apr 18.
7
8
Progress and prospects of C trait engineering in plants.
Plant Biol (Stuttg). 2022 Oct;24(6):920-931. doi: 10.1111/plb.13446. Epub 2022 Jul 13.
9
Tracing the evolutionary path to nitrogen-fixing crops.
Curr Opin Plant Biol. 2015 Aug;26:95-9. doi: 10.1016/j.pbi.2015.06.003. Epub 2015 Jun 26.
10
Genetic engineering of energy crops: a strategy for biofuel production in China.
J Integr Plant Biol. 2011 Feb;53(2):143-50. doi: 10.1111/j.1744-7909.2010.01022.x.

引用本文的文献

1
Evolutionary trajectory of transcription factors and selection of targets for metabolic engineering.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230367. doi: 10.1098/rstb.2023.0367. Epub 2024 Sep 30.
2
Navigating Amaryllidaceae alkaloids: bridging gaps and charting biosynthetic territories.
J Exp Bot. 2025 Jan 1;76(1):16-34. doi: 10.1093/jxb/erae187.
4
Synthetic microbe-to-plant communication channels.
Nat Commun. 2024 Feb 28;15(1):1817. doi: 10.1038/s41467-024-45897-6.
5
Designing plant flavonoids: harnessing transcriptional regulation and enzyme variation to enhance yield and diversity.
Front Plant Sci. 2023 Jul 28;14:1220062. doi: 10.3389/fpls.2023.1220062. eCollection 2023.
6
Antioxidant Green Factories: Toward Sustainable Production of Vitamin E in Plant Cultures.
ACS Omega. 2023 Jan 13;8(4):3586-3605. doi: 10.1021/acsomega.2c05819. eCollection 2023 Jan 31.
9
The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding.
Int J Genomics. 2016;2016:5078796. doi: 10.1155/2016/5078796. Epub 2016 Dec 20.
10
Interactions between the microbiota and pathogenic bacteria in the gut.
Nature. 2016 Jul 7;535(7610):85-93. doi: 10.1038/nature18849.

本文引用的文献

1
A golden gate modular cloning toolbox for plants.
ACS Synth Biol. 2014 Nov 21;3(11):839-43. doi: 10.1021/sb4001504. Epub 2014 Feb 20.
2
Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.
Curr Opin Biotechnol. 2014 Jun;27:38-45. doi: 10.1016/j.copbio.2013.09.008. Epub 2013 Oct 23.
3
Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone.
Science. 2014 Apr 4;344(6179):90-3. doi: 10.1126/science.1250161.
4
Biotechnological solutions to the nitrogen problem.
Curr Opin Biotechnol. 2014 Apr;26:19-24. doi: 10.1016/j.copbio.2013.08.006. Epub 2013 Sep 6.
5
CRISPR-Cas systems for editing, regulating and targeting genomes.
Nat Biotechnol. 2014 Apr;32(4):347-55. doi: 10.1038/nbt.2842. Epub 2014 Mar 2.
6
Engineering complex metabolic pathways in plants.
Annu Rev Plant Biol. 2014;65:187-223. doi: 10.1146/annurev-arplant-050213-035825. Epub 2014 Feb 26.
7
Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters.
Nat Nanotechnol. 2014 Mar;9(3):193-7. doi: 10.1038/nnano.2014.13. Epub 2014 Feb 23.
8
Metabolic engineering approaches for production of biochemicals in food and medicinal plants.
Curr Opin Biotechnol. 2014 Apr;26:174-82. doi: 10.1016/j.copbio.2014.01.006. Epub 2014 Feb 18.
10
Pivoting the plant immune system from dissection to deployment.
Science. 2013 Aug 16;341(6147):746-51. doi: 10.1126/science.1236011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验