1 Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, U992, F-91191 Gif/Yvette, France2 NeuroSpin Centre, Institute of BioImaging Commissariat à l'Energie Atomique, F-91191 Gif/Yvette, France3 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
3 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
Brain. 2014 Aug;137(Pt 8):2258-70. doi: 10.1093/brain/awu141. Epub 2014 Jun 11.
In recent years, numerous electrophysiological signatures of consciousness have been proposed. Here, we perform a systematic analysis of these electroencephalography markers by quantifying their efficiency in differentiating patients in a vegetative state from those in a minimally conscious or conscious state. Capitalizing on a review of previous experiments and current theories, we identify a series of measures that can be organized into four dimensions: (i) event-related potentials versus ongoing electroencephalography activity; (ii) local dynamics versus inter-electrode information exchange; (iii) spectral patterns versus information complexity; and (iv) average versus fluctuations over the recording session. We analysed a large set of 181 high-density electroencephalography recordings acquired in a 30 minutes protocol. We show that low-frequency power, electroencephalography complexity, and information exchange constitute the most reliable signatures of the conscious state. When combined, these measures synergize to allow an automatic classification of patients' state of consciousness.
近年来,已经提出了许多意识的电生理特征。在这里,我们通过量化这些脑电图标记在区分植物状态和最小意识或意识状态患者的效率,对这些电生理标记进行了系统的分析。利用对先前实验和当前理论的回顾,我们确定了一系列可以分为四个维度的措施:(i)事件相关电位与持续脑电图活动;(ii)局部动力学与电极间信息交换;(iii)频谱模式与信息复杂性;以及(iv)记录过程中的平均值与波动。我们分析了在 30 分钟方案中获取的 181 个高密度脑电图记录的一大组。我们表明,低频功率、脑电图复杂性和信息交换构成了意识状态最可靠的特征。当这些措施结合在一起时,它们可以协同作用,自动分类患者的意识状态。