Suppr超能文献

一种用于听觉皮层记录的高密度、高通道数、多路复用的微电极脑电图(μECoG)阵列。

A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings.

作者信息

Escabí Monty A, Read Heather L, Viventi Jonathan, Kim Dae-Hyeong, Higgins Nathan C, Storace Douglas A, Liu Andrew S K, Gifford Adam M, Burke John F, Campisi Matthew, Kim Yun-Soung, Avrin Andrew E, Spiegel Jan Van der, Huang Yonggang, Li Ming, Wu Jian, Rogers John A, Litt Brian, Cohen Yale E

机构信息

Department of Psychology, University of Connecticut, Storrs, Connecticut; Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut; Department of Electrical Engineering, University of Connecticut, Storrs, Connecticut;

Department of Psychology, University of Connecticut, Storrs, Connecticut; Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut;

出版信息

J Neurophysiol. 2014 Sep 15;112(6):1566-83. doi: 10.1152/jn.00179.2013. Epub 2014 Jun 11.

Abstract

Our understanding of the large-scale population dynamics of neural activity is limited, in part, by our inability to record simultaneously from large regions of the cortex. Here, we validated the use of a large-scale active microelectrode array that simultaneously records 196 multiplexed micro-electrocortigraphical (μECoG) signals from the cortical surface at a very high density (1,600 electrodes/cm(2)). We compared μECoG measurements in auditory cortex using a custom "active" electrode array to those recorded using a conventional "passive" μECoG array. Both of these array responses were also compared with data recorded via intrinsic optical imaging, which is a standard methodology for recording sound-evoked cortical activity. Custom active μECoG arrays generated more veridical representations of the tonotopic organization of the auditory cortex than current commercially available passive μECoG arrays. Furthermore, the cortical representation could be measured efficiently with the active arrays, requiring as little as 13.5 s of neural data acquisition. Next, we generated spectrotemporal receptive fields from the recorded neural activity on the active μECoG array and identified functional organizational principles comparable to those observed using intrinsic metabolic imaging and single-neuron recordings. This new electrode array technology has the potential for large-scale, temporally precise monitoring and mapping of the cortex, without the use of invasive penetrating electrodes.

摘要

我们对神经活动大规模群体动态的理解在一定程度上受到限制,原因是我们无法同时从大脑皮层的大片区域进行记录。在此,我们验证了一种大规模有源微电极阵列的用途,该阵列能以非常高的密度(1600个电极/平方厘米)同时从皮层表面记录196个复用的微脑电图(μECoG)信号。我们将使用定制“有源”电极阵列在听觉皮层进行的μECoG测量结果与使用传统“无源”μECoG阵列记录的结果进行了比较。这两种阵列的反应还与通过内在光学成像记录的数据进行了比较,内在光学成像是记录声音诱发皮层活动的标准方法。与目前市售的无源μECoG阵列相比,定制有源μECoG阵列能更真实地呈现听觉皮层的音频拓扑组织。此外,使用有源阵列可以高效地测量皮层表征,只需13.5秒的神经数据采集时间。接下来我们根据有源μECoG阵列上记录的神经活动生成了频谱时间感受野,并确定了与使用内在代谢成像和单神经元记录所观察到的功能组织原则相当的原则。这种新的电极阵列技术有可能在不使用侵入性穿透电极的情况下,对大脑皮层进行大规模、时间精确的监测和绘图。

相似文献

1
A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings.
J Neurophysiol. 2014 Sep 15;112(6):1566-83. doi: 10.1152/jn.00179.2013. Epub 2014 Jun 11.
2
A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents.
J Neural Eng. 2016 Apr;13(2):026030-26030. doi: 10.1088/1741-2560/13/2/026030. Epub 2016 Mar 15.
3
A low-cost, scalable, current-sensing digital headstage for high channel count μECoG.
J Neural Eng. 2017 Apr;14(2):026009. doi: 10.1088/1741-2552/aa5a82. Epub 2017 Jan 19.
4
Estimating cortical column sensory networks in rodents from micro-electrocorticograph (μECoG) recordings.
Neuroimage. 2017 Dec;163:342-357. doi: 10.1016/j.neuroimage.2017.09.043. Epub 2017 Sep 23.
6
A modular high-density μECoG system on macaque vlPFC for auditory cognitive decoding.
J Neural Eng. 2020 Jul 10;17(4):046008. doi: 10.1088/1741-2552/ab9986.
8
Fast tonotopy mapping of the rat auditory cortex with a custom-made electrode array.
Physiol Res. 2018 Dec 18;67(6):993-998. doi: 10.33549/physiolres.933835. Epub 2018 Sep 11.
9
Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays.
Ann Biomed Eng. 2006 Feb;34(2):300-9. doi: 10.1007/s10439-005-9037-9. Epub 2006 Feb 16.
10
A low-cost, multiplexed electrophysiology system for chronic μECoG recordings in rodents.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5256-9. doi: 10.1109/EMBC.2014.6944811.

引用本文的文献

1
Materials and devices for high-density, high-throughput micro-electrocorticography arrays.
Fundam Res. 2024 Feb 28;5(1):17-28. doi: 10.1016/j.fmre.2024.01.016. eCollection 2025 Jan.
2
Receptive-field nonlinearities in primary auditory cortex: a comparative perspective.
Cereb Cortex. 2024 Sep 3;34(9). doi: 10.1093/cercor/bhae364.
4
Concept for intrathecal delivery of brain recording and stimulation device.
Front Med Technol. 2024 Feb 8;6:1211585. doi: 10.3389/fmedt.2024.1211585. eCollection 2024.
6
A Soft, High-Density Neuroelectronic Array.
Npj Flex Electron. 2023;7(1). doi: 10.1038/s41528-023-00271-2. Epub 2023 Aug 22.
7
Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces.
MRS Bull. 2023 May;48(5):531-546. doi: 10.1557/s43577-023-00537-0. Epub 2023 May 31.
8
Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface.
IEEE Biomed Circuits Syst Conf. 2022 Oct;2022:477-481. doi: 10.1109/biocas54905.2022.9948553. Epub 2022 Nov 16.
10
Visual modulation of firing and spectrotemporal receptive fields in mouse auditory cortex.
Curr Res Neurobiol. 2022 May 18;3:100040. doi: 10.1016/j.crneur.2022.100040. eCollection 2022.

本文引用的文献

1
Degraded auditory processing in a rat model of autism limits the speech representation in non-primary auditory cortex.
Dev Neurobiol. 2014 Oct;74(10):972-86. doi: 10.1002/dneu.22175. Epub 2014 Apr 4.
2
Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.
PLoS One. 2013 May 6;8(5):e63655. doi: 10.1371/journal.pone.0063655. Print 2013.
6
Selective cortical representation of attended speaker in multi-talker speech perception.
Nature. 2012 May 10;485(7397):233-6. doi: 10.1038/nature11020.
8
Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex.
PLoS One. 2012;7(2):e31537. doi: 10.1371/journal.pone.0031537. Epub 2012 Feb 27.
9
Reconstructing speech from human auditory cortex.
PLoS Biol. 2012 Jan;10(1):e1001251. doi: 10.1371/journal.pbio.1001251. Epub 2012 Jan 31.
10
Identification and characterization of an insular auditory field in mice.
Eur J Neurosci. 2011 Dec;34(12):1944-52. doi: 10.1111/j.1460-9568.2011.07926.x. Epub 2011 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验