Suppr超能文献

合并症收集方法的比较。

Comparison of comorbidity collection methods.

作者信息

Kallogjeri Dorina, Gaynor Sheila M, Piccirillo Marilyn L, Jean Raymond A, Spitznagel Edward L, Piccirillo Jay F

机构信息

Clinical Outcomes Research Office, Department of Otolaryngology-Head and Neck Surgery, Washington University in St Louis, St Louis, MO.

Department of Mathematics, Washington University in St Louis, St Louis, MO.

出版信息

J Am Coll Surg. 2014 Aug;219(2):245-55. doi: 10.1016/j.jamcollsurg.2014.01.059. Epub 2014 Mar 19.

Abstract

BACKGROUND

Multiple valid comorbidity indices exist to quantify the presence and role of comorbidities in cancer patient survival. Our goal was to compare chart-based Adult Comorbidity Evaluation-27 index (ACE-27) and claims-based Charlson Comorbidity Index (CCI) methods of identifying comorbid ailments and their prognostic abilities.

STUDY DESIGN

We conducted a prospective cohort study of 6,138 newly diagnosed cancer patients at 12 different institutions. Participating registrars were trained to collect comorbidities from the abstracted chart using the ACE-27 method. The ACE-27 assessment was compared with comorbidities captured through hospital discharge face sheets using ICD coding. The prognostic accomplishments of each comorbidity method were examined using follow-up data assessed at 24 months after data abstraction.

RESULTS

Distribution of the ACE-27 scores was: "none" for 1,453 (24%) of the patients; "mild" for 2,388 (39%); "moderate" for 1,344 (22%), and "severe" for 950 (15%) of the patients. Deyo's adaption of the CCI identified 4,265 (69%) patients with a CCI score of 0, and the remaining 31% had CCI scores of 1 (n = 1,341 [22%]), 2 (n = 365 [6%]), or 3 or more (n = 167 [3%]). Of the 4,265 patients with a CCI score of zero, 394 (9%) were coded with severe comorbidities based on ACE-27 method. A higher comorbidity score was significantly associated with higher risk of death for both comorbidity indices. The multivariable Cox model, including both comorbidity indices, had the best performance (Nagelkerke's R(2) = 0.37) and the best discrimination (C index = 0.827).

CONCLUSIONS

The number, type, and overall severity of comorbid ailments identified by chart- and claims-based approaches in newly diagnosed cancer patients were notably different. Both indices were prognostically significant and able to provide unique prognostic information.

摘要

背景

存在多种有效的合并症指数来量化合并症在癌症患者生存中的存在情况和作用。我们的目标是比较基于病历的成人合并症评估-27指数(ACE-27)和基于索赔的查尔森合并症指数(CCI)识别合并症疾病的方法及其预后能力。

研究设计

我们对12个不同机构的6138例新诊断癌症患者进行了一项前瞻性队列研究。参与的登记员接受培训,使用ACE-27方法从摘要病历中收集合并症。将ACE-27评估结果与通过使用ICD编码的医院出院病历首页记录的合并症进行比较。使用数据提取后24个月评估的随访数据检查每种合并症方法的预后效果。

结果

ACE-27评分分布为:1453例(24%)患者为“无”;2388例(39%)为“轻度”;1344例(22%)为“中度”;950例(15%)为“重度”。Deyo对CCI的改编确定4265例(69%)患者的CCI评分为0,其余31%的患者CCI评分为1(n = 1341 [22%])、2(n = 365 [6%])或3及以上(n = 167 [3%])。在4265例CCI评分为零的患者中,根据ACE-27方法,394例(9%)被编码为患有严重合并症。两种合并症指数中,较高的合并症评分均与较高的死亡风险显著相关。包括两种合并症指数的多变量Cox模型表现最佳(Nagelkerke's R(2)=0.37)且区分能力最佳(C指数 = 0.827)。

结论

基于病历和基于索赔的方法在新诊断癌症患者中识别出的合并症疾病的数量、类型和总体严重程度存在显著差异。两种指数在预后方面均具有显著意义,并且能够提供独特的预后信息。

相似文献

1
Comparison of comorbidity collection methods.合并症收集方法的比较。
J Am Coll Surg. 2014 Aug;219(2):245-55. doi: 10.1016/j.jamcollsurg.2014.01.059. Epub 2014 Mar 19.

引用本文的文献

9
Management of Nasopharyngeal Carcinoma in Elderly Patients.老年鼻咽癌的管理
Front Oncol. 2022 Feb 1;12:810690. doi: 10.3389/fonc.2022.810690. eCollection 2022.

本文引用的文献

1
THE PRE-THERAPEUTIC CLASSIFICATION OF CO-MORBIDITY IN CHRONIC DISEASE.慢性病共病的治疗前分类
J Chronic Dis. 1970 Dec;23(7):455-68. doi: 10.1016/0021-9681(70)90054-8.
4
Comorbidity measurement in patients with laryngeal squamous cell carcinoma.喉鳞状细胞癌患者的共病测量
ORL J Otorhinolaryngol Relat Spec. 2007;69(3):146-52. doi: 10.1159/000099223. Epub 2007 Jan 30.
7
The impact of comorbidity on outcomes.共病对预后的影响。
ORL J Otorhinolaryngol Relat Spec. 2004 Jul-Aug;66(4):180-5. doi: 10.1159/000079875.
9
Assessing comorbidity using claims data: an overview.使用索赔数据评估共病:概述
Med Care. 2002 Aug;40(8 Suppl):IV-26-35. doi: 10.1097/00005650-200208001-00004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验