Taioli Simone
Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento, Italy,
J Mol Model. 2014 Jul;20(7):2260. doi: 10.1007/s00894-014-2260-2. Epub 2014 Jun 18.
In this work the growth of a graphene monolayer on copper substrate, as typically achieved via chemical vapor deposition of propene (C3H6), was investigated by first-principles and kinetic Monte Carlo calculations. A comparison between calculated C1s core-level binding energies and electron spectroscopy measurements showed that graphene nucleates from isolated carbon atoms adsorbed on surface defects or sub-superficial layers upon hydrocarbon fragmentation. In this respect, ab initio nudged elastic band simulations yield the energetic barriers characterizing the diffusion of elemental carbon on the Cu(111) surface and atomic carbon uptake by the growing graphene film. Our calculations highlight a strong interaction between the growing film edges and the copper substrate, indicative of the importance of the grain boundaries in the epitaxy process. Furthermore, we used activation energies to compute the reaction rates for the different mechanisms occurring at the carbon-copper interface via harmonic transition state theory. Finally, we simulated the long-time system growth evolution through a kinetic Monte Carlo approach for different temperatures and coverage. Our ab initio and Monte Carlo simulations of the out-of-equilibrium system point towards a growth model strikingly different from that of standard film growth. Graphene growth on copper turns out to be a catalytic, thermally-activated process that nucleates from carbon monomers, proceeds by adsorption of carbon atoms, and is not self-limiting. Furthermore, graphene growth seems to be more effective at carbon supersaturation of the surface-a clear fingerprint of a large activation barrier for C attachment. Our growth model and computational results are in good agreement with recent X-ray photoelectron spectroscopy experimental measurements.
在这项工作中,通过第一性原理和动力学蒙特卡罗计算,研究了在铜衬底上石墨烯单层的生长,这通常是通过丙烯(C3H6)的化学气相沉积来实现的。计算得到的C1s芯能级结合能与电子能谱测量结果的比较表明,石墨烯是由吸附在表面缺陷或亚表层上的孤立碳原子在烃类碎片化时形成的。在这方面,从头算推挤弹性带模拟得出了表征元素碳在Cu(111)表面扩散以及生长中的石墨烯膜吸收碳原子的能量势垒。我们的计算突出了生长膜边缘与铜衬底之间的强相互作用,这表明晶界在外延过程中的重要性。此外,我们通过谐波过渡态理论,利用活化能计算了碳 - 铜界面处不同机制的反应速率。最后,我们通过动力学蒙特卡罗方法模拟了不同温度和覆盖率下系统的长时间生长演化。我们对非平衡系统的从头算和蒙特卡罗模拟指向了一个与标准薄膜生长截然不同的生长模型。铜上石墨烯的生长原来是一个催化的、热激活的过程,它从碳单体开始成核,通过碳原子的吸附进行,并且不是自限性的。此外,石墨烯生长在表面碳过饱和时似乎更有效——这是碳附着存在大活化势垒的明显特征。我们的生长模型和计算结果与最近的X射线光电子能谱实验测量结果高度吻合。