Suppr超能文献

使用能量最小化框架进行数字图像相关(DIC)图像重建以可视化光程长度分布。

DIC image reconstruction using an energy minimization framework to visualize optical path length distribution.

作者信息

Koos Krisztian, Molnár József, Kelemen Lóránd, Tamás Gábor, Horvath Peter

机构信息

Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, BRC, Szeged, Hungary.

Institute of Biophysics, Hungarian Academy of Sciences, BRC, Szeged, Hungary.

出版信息

Sci Rep. 2016 Jul 25;6:30420. doi: 10.1038/srep30420.

Abstract

Label-free microscopy techniques have numerous advantages such as low phototoxicity, simple setup and no need for fluorophores or other contrast materials. Despite their advantages, most label-free techniques cannot visualize specific cellular compartments or the location of proteins and the image formation limits quantitative evaluation. Differential interference contrast (DIC) is a qualitative microscopy technique that shows the optical path length differences within a specimen. We propose a variational framework for DIC image reconstruction. The proposed method largely outperforms state-of-the-art methods on synthetic, artificial and real tests and turns DIC microscopy into an automated high-content imaging tool. Image sets and the source code of the examined algorithms are made publicly available.

摘要

无标记显微镜技术具有许多优点,如光毒性低、设置简单,无需荧光团或其他造影材料。尽管具有这些优点,但大多数无标记技术无法可视化特定的细胞区室或蛋白质的位置,并且图像形成限制了定量评估。微分干涉对比(DIC)是一种定性显微镜技术,可显示标本内的光程长度差异。我们提出了一种用于DIC图像重建的变分框架。该方法在合成、人工和实际测试中大大优于现有方法,并将DIC显微镜转变为一种自动化的高内涵成像工具。所研究算法的图像集和源代码已公开提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04a3/4958949/2e95e30cb8b8/srep30420-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验