Suppr超能文献

使用带逻辑回归的储层计算进行心电图分类。

Electrocardiogram classification using reservoir computing with logistic regression.

作者信息

Escalona-Morán Miguel Angel, Soriano Miguel C, Fischer Ingo, Mirasso Claudio R

出版信息

IEEE J Biomed Health Inform. 2015 May;19(3):892-8. doi: 10.1109/JBHI.2014.2332001. Epub 2014 Jun 19.

Abstract

An adapted state-of-the-art method of processing information known as Reservoir Computing is used to show its utility on the open and time-consuming problem of heartbeat classification. The MIT-BIH arrhythmia database is used following the guidelines of the Association for the Advancement of Medical Instrumentation. Our approach requires a computationally inexpensive preprocessing of the electrocardiographic signal leading to a fast algorithm and approaching a real-time classification solution. Our multiclass classification results indicate an average specificity of 97.75% with an average accuracy of 98.43%. Sensitivity and positive predicted value show an average of 84.83% and 88.75%, respectively, what makes our approach significant for its use in a clinical context.

摘要

一种经过改进的处理信息的先进方法——储层计算,被用于展示其在心跳分类这一开放且耗时的问题上的效用。按照医学仪器促进协会的指导方针,使用了麻省理工学院-贝斯以色列女执事医疗中心心律失常数据库。我们的方法需要对心电图信号进行计算成本较低的预处理,从而得到一种快速算法,并接近实时分类解决方案。我们的多类分类结果表明,平均特异性为97.75%,平均准确率为98.43%。敏感性和阳性预测值平均分别为84.83%和88.75%,这使得我们的方法在临床应用中具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验