SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road MS69, Menlo Park, California 94025, USA.
Nat Commun. 2014 Jun 27;5:4243. doi: 10.1038/ncomms5243.
Although diffractive optics have played a major role in nanoscale soft X-ray imaging, high-resolution and high-efficiency diffractive optics have largely been unavailable for hard X-rays where many scientific, technological and biomedical applications exist. This is owing to the long-standing challenge of fabricating ultra-high aspect ratio high-resolution dense nanostructures. Here we report significant progress in ultra-high aspect ratio nanofabrication of high-resolution, dense silicon nanostructures using vertical directionality controlled metal-assisted chemical etching. The resulting structures have very smooth sidewalls and can be used to pattern arbitrary features, not limited to linear or circular. We focus on the application of X-ray zone plate fabrication for high-efficiency, high-resolution diffractive optics, and demonstrate the process with linear, circular, and spiral zone plates. X-ray measurements demonstrate high efficiency in the critical outer layers. This method has broad applications including patterning for thermoelectric materials, battery anodes and sensors among others.
虽然衍射光学元件在纳米尺度软 X 射线成像中发挥了重要作用,但在存在许多科学、技术和生物医学应用的硬 X 射线中,高分辨率和高效率的衍射光学元件在很大程度上仍然难以实现。这是由于长期以来一直面临着制造超高纵横比、高分辨率密集纳米结构的挑战。在这里,我们报告了使用垂直方向控制的金属辅助化学蚀刻在超高纵横比纳米制造方面的重大进展,制造出了具有非常光滑侧壁的高分辨率、密集硅纳米结构。这些结构可用于图案化任意特征,不仅限于线性或圆形。我们专注于 X 射线波带片制造在高效、高分辨率衍射光学元件中的应用,并展示了线性、圆形和螺旋波带片的制造过程。X 射线测量证明了在关键外层的高效率。该方法具有广泛的应用,包括热电材料、电池阳极和传感器等的图案化。