Zhang Xiaomeng, Yao Chuhao, Niu Jiebin, Li Hailiang, Xie Changqing
Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Micromachines (Basel). 2023 Jan 10;14(1):179. doi: 10.3390/mi14010179.
Silicon structures with ultra-high aspect ratios have great potential applications in the fields of optoelectronics and biomedicine. However, the slope and increased roughness of the sidewalls inevitably introduced during the use of conventional etching processes (e.g., Bosch and DRIE) remain an obstacle to their application. In this paper, 4-inch wafer-scale, ultra-high aspect ratio (>140:1) microscale silicon structures with smooth sidewalls are successfully prepared using metal-assisted chemical etching (MacEtch). Here, we clarify the impact of the size from the metal catalytic structure on the sidewall roughness. By optimizing the etchant ratio to accelerate the etch rate of the metal-catalyzed structure and employing thermal oxidation, the sidewall roughness can be significantly reduced (average root mean square (RMS) from 42.3 nm to 15.8 nm). Simulations show that a maximum exciton production rate (Gmax) of 1.21 × 1026 and a maximum theoretical short-circuit current density (Jsc) of 39.78 mA/cm2 can be obtained for the micropillar array with smooth sidewalls, which have potential applications in high-performance microscale photovoltaic devices.
具有超高纵横比的硅结构在光电子学和生物医学领域具有巨大的潜在应用价值。然而,在使用传统蚀刻工艺(如博世工艺和深反应离子蚀刻工艺)过程中不可避免地引入的侧壁斜率和粗糙度增加,仍然是其应用的障碍。在本文中,通过金属辅助化学蚀刻(MacEtch)成功制备了具有光滑侧壁的4英寸晶圆级超高纵横比(>140:1)的微尺度硅结构。在此,我们阐明了金属催化结构的尺寸对侧壁粗糙度的影响。通过优化蚀刻剂比例以加快金属催化结构的蚀刻速率并采用热氧化工艺,侧壁粗糙度可显著降低(平均均方根(RMS)从42.3纳米降至15.8纳米)。模拟结果表明,对于具有光滑侧壁的微柱阵列,可获得1.21×10²⁶的最大激子产生率(Gmax)和39.78 mA/cm²的最大理论短路电流密度(Jsc),这在高性能微尺度光伏器件中具有潜在应用价值。