Suppr超能文献

为人民的公共卫生:数字时代的参与式传染病监测

Public health for the people: participatory infectious disease surveillance in the digital age.

作者信息

Wójcik Oktawia P, Brownstein John S, Chunara Rumi, Johansson Michael A

机构信息

Harvard Medical School and Boston Children's Hospital, 1 Autumn St., Boston, MA 02215, USA.

Centers for Disease Control and Prevention, San Juan, Puerto Rico, USA.

出版信息

Emerg Themes Epidemiol. 2014 Jun 20;11:7. doi: 10.1186/1742-7622-11-7. eCollection 2014.

Abstract

The 21(st) century has seen the rise of Internet-based participatory surveillance systems for infectious diseases. These systems capture voluntarily submitted symptom data from the general public and can aggregate and communicate that data in near real-time. We reviewed participatory surveillance systems currently running in 13 different countries. These systems have a growing evidence base showing a high degree of accuracy and increased sensitivity and timeliness relative to traditional healthcare-based systems. They have also proven useful for assessing risk factors, vaccine effectiveness, and patterns of healthcare utilization while being less expensive, more flexible, and more scalable than traditional systems. Nonetheless, they present important challenges including biases associated with the population that chooses to participate, difficulty in adjusting for confounders, and limited specificity because of reliance only on syndromic definitions of disease limits. Overall, participatory disease surveillance data provides unique disease information that is not available through traditional surveillance sources.

摘要

21世纪见证了基于互联网的传染病参与式监测系统的兴起。这些系统收集公众自愿提交的症状数据,并能近乎实时地汇总和传播这些数据。我们回顾了目前在13个不同国家运行的参与式监测系统。这些系统的证据基础不断扩大,显示出相对于传统的基于医疗保健的系统具有高度的准确性、更高的敏感性和及时性。它们还被证明在评估风险因素、疫苗效力和医疗保健利用模式方面很有用,同时比传统系统成本更低、更灵活且更具扩展性。尽管如此,它们也带来了重要挑战,包括与选择参与的人群相关的偏差、调整混杂因素的困难以及由于仅依赖疾病综合征定义而导致的特异性有限。总体而言,参与式疾病监测数据提供了传统监测来源无法获得的独特疾病信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/366e/4078360/48b4c6fbda1f/1742-7622-11-7-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验