Junior Research Group Intestinal Microbiome; ZIEL-Research Center for Nutrition and Food Sciences; Technische Universität München; Freising-Weihenstephan, Germany.
Molecular Nutrition Unit; ZIEL-Research Center for Nutrition and Food Sciences; Technische Universität München; Freising-Weihenstephan, Germany.
Gut Microbes. 2014 Jul 1;5(4):544-51. doi: 10.4161/gmic.29331. Epub 2014 Jul 8.
The trillions of bacterial cells that colonize the mammalian digestive tract influence both host physiology and the fate of dietary compounds. Gnotobionts and fecal transplantation have been instrumental in revealing the causal role of intestinal bacteria in energy homeostasis and metabolic dysfunctions such as type-2 diabetes. However, the exact contribution of gut bacterial metabolism to host energy balance is still unclear and knowledge about underlying molecular mechanisms is scant. We have previously characterized cecal bacterial community functions and host responses in diet-induced obese mice using omics approaches. Based on these studies, we here discuss issues on the relevance of mouse models, give evidence that the metabolism of cholesterol-derived compounds by gut bacteria is of particular importance in the context of metabolic disorders and that dominant species of the family Coriobacteriaceae are good models to study these functions.
定植于哺乳动物消化道的数以万亿计的细菌细胞影响宿主生理学和膳食化合物的命运。无菌动物和粪便移植在揭示肠道细菌在能量平衡和代谢功能障碍(如 2 型糖尿病)中的因果作用方面发挥了重要作用。然而,肠道细菌代谢对宿主能量平衡的确切贡献尚不清楚,相关的分子机制知识也很少。我们之前使用组学方法研究了饮食诱导肥胖小鼠的盲肠细菌群落功能和宿主反应。基于这些研究,我们在这里讨论了关于小鼠模型相关性的问题,提供了证据表明肠道细菌胆固醇衍生化合物的代谢在代谢紊乱的情况下特别重要,而且科里氏菌科的优势种是研究这些功能的良好模型。