Suppr超能文献

基于一致性误差最小化的切伦科夫发光断层扫描概率方法。

Probability method for Cerenkov luminescence tomography based on conformance error minimization.

作者信息

Ding Xintao, Wang Kun, Jie Biao, Luo Yonglong, Hu Zhenhua, Tian Jie

机构信息

School of Territorial Resources and Tourism, Anhui Normal University, Wuhu, Anhui 241003, China ; School of Mathematics and Computer Science, Anhui Normal University, Wuhu, Anhui 241003, China.

Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Biomed Opt Express. 2014 Jun 9;5(7):2091-112. doi: 10.1364/BOE.5.002091. eCollection 2014 Jul 1.

Abstract

Cerenkov luminescence tomography (CLT) was developed to reconstruct a three-dimensional (3D) distribution of radioactive probes inside a living animal. Reconstruction methods are generally performed within a unique framework by searching for the optimum solution. However, the ill-posed aspect of the inverse problem usually results in the reconstruction being non-robust. In addition, the reconstructed result may not match reality since the difference between the highest and lowest uptakes of the resulting radiotracers may be considerably large, therefore the biological significance is lost. In this paper, based on the minimization of a conformance error, a probability method is proposed that consists of qualitative and quantitative modules. The proposed method first pinpoints the organ that contains the light source. Next, we developed a 0-1 linear optimization subject to a space constraint to model the CLT inverse problem, which was transformed into a forward problem by employing a region growing method to solve the optimization. After running through all of the elements used to grow the sources, a source sequence was obtained. Finally, the probability of each discrete node being the light source inside the organ was reconstructed. One numerical study and two in vivo experiments were conducted to verify the performance of the proposed algorithm, and comparisons were carried out using the hp-finite element method (hp-FEM). The results suggested that our proposed probability method was more robust and reasonable than hp-FEM.

摘要

切伦科夫发光断层扫描(CLT)技术旨在重建活体动物体内放射性探针的三维(3D)分布。重建方法通常是在一个独特的框架内通过寻找最优解来进行的。然而,反问题的不适定性通常会导致重建结果不稳定。此外,由于所得放射性示踪剂的最高和最低摄取量之间的差异可能相当大,重建结果可能与实际情况不符,从而失去生物学意义。本文基于一致性误差的最小化,提出了一种概率方法,该方法由定性和定量模块组成。所提出的方法首先确定包含光源的器官。接下来,我们开发了一种受空间约束的0-1线性优化方法来对CLT反问题进行建模,通过采用区域生长法求解优化问题将其转化为正问题。在遍历所有用于生长源的元素后,获得了源序列。最后,重建了器官内每个离散节点作为光源的概率。进行了一项数值研究和两项体内实验来验证所提算法的性能,并与高阶有限元方法(hp-FEM)进行了比较。结果表明,我们提出的概率方法比hp-FEM更稳健、更合理。

相似文献

1
Probability method for Cerenkov luminescence tomography based on conformance error minimization.
Biomed Opt Express. 2014 Jun 9;5(7):2091-112. doi: 10.1364/BOE.5.002091. eCollection 2014 Jul 1.
3
K-CapsNet: K-Nearest Neighbor Based Convolution Capsule Network for Cerenkov Luminescence Tomography Reconstruction.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10341089.
5
Prior Compensation Algorithm for Cerenkov Luminescence Tomography From Single-View Measurements.
Front Oncol. 2021 Sep 23;11:749889. doi: 10.3389/fonc.2021.749889. eCollection 2021.
6
Forward-backward pursuit algorithm for Cerenkov luminescence tomography.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2889-2892. doi: 10.1109/EMBC.2016.7591333.
7
Non-Negative Iterative Convex Refinement Approach for Accurate and Robust Reconstruction in Cerenkov Luminescence Tomography.
IEEE Trans Med Imaging. 2020 Oct;39(10):3207-3217. doi: 10.1109/TMI.2020.2987640. Epub 2020 Apr 21.
8
FISTA-NET: Deep Algorithm Unrolling for Cerenkov luminescence tomography.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340506.
9
Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation.
Opt Express. 2010 Nov 22;18(24):24441-50. doi: 10.1364/OE.18.024441.
10
Attention mechanism-based locally connected network for accurate and stable reconstruction in Cerenkov luminescence tomography.
Biomed Opt Express. 2021 Nov 18;12(12):7703-7716. doi: 10.1364/BOE.443517. eCollection 2021 Dec 1.

引用本文的文献

1
A new EGFR and c-Met bispecific NIR-II fluorescent probe for visualising colorectal cancer and metastatic lymph nodes.
EBioMedicine. 2025 May;115:105687. doi: 10.1016/j.ebiom.2025.105687. Epub 2025 Apr 17.
2
Attention mechanism-based locally connected network for accurate and stable reconstruction in Cerenkov luminescence tomography.
Biomed Opt Express. 2021 Nov 18;12(12):7703-7716. doi: 10.1364/BOE.443517. eCollection 2021 Dec 1.
4
Enhanced Cerenkov luminescence tomography analysis based on YO:Eu rare earth oxide nanoparticles.
Biomed Opt Express. 2018 Nov 8;9(12):6091-6102. doi: 10.1364/BOE.9.006091. eCollection 2018 Dec 1.
5
Image Restoration for Fluorescence Planar Imaging with Diffusion Model.
Biomed Res Int. 2017;2017:2010512. doi: 10.1155/2017/2010512. Epub 2017 Nov 27.
6
Reconstruction Method for Optical Tomography Based on the Linearized Bregman Iteration with Sparse Regularization.
Comput Math Methods Med. 2015;2015:304191. doi: 10.1155/2015/304191. Epub 2015 Sep 1.

本文引用的文献

2
Oxygen tomography by Čerenkov-excited phosphorescence during external beam irradiation.
J Biomed Opt. 2013 May;18(5):50503. doi: 10.1117/1.JBO.18.5.050503.
3
Čerenkov excited fluorescence tomography using external beam radiation.
Opt Lett. 2013 Apr 15;38(8):1364-6. doi: 10.1364/OL.38.001364.
5
Cerenkov imaging - a new modality for molecular imaging.
Am J Nucl Med Mol Imaging. 2012;2(2):163-73. Epub 2012 Mar 28.
7
Quantitative modeling of Cerenkov light production efficiency from medical radionuclides.
PLoS One. 2012;7(2):e31402. doi: 10.1371/journal.pone.0031402. Epub 2012 Feb 20.
8
Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging.
J Nucl Med. 2012 Feb;53(2):312-317. doi: 10.2967/jnumed.111.094623. Epub 2012 Jan 12.
9
In vivo Cerenkov luminescence imaging: a new tool for molecular imaging.
Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4605-19. doi: 10.1098/rsta.2011.0271.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验