Suppr超能文献

质粒DNA在体外启动黄热病疫苗的复制,并在小鼠体内引发病毒特异性免疫反应。

Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

作者信息

Tretyakova Irina, Nickols Brian, Hidajat Rachmat, Jokinen Jenny, Lukashevich Igor S, Pushko Peter

机构信息

Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.

Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.

出版信息

Virology. 2014 Nov;468-470:28-35. doi: 10.1016/j.virol.2014.07.050. Epub 2014 Aug 16.

Abstract

Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF.

摘要

黄热病(YF)在热带非洲和拉丁美洲引发急性出血热疾病。为研发一种新型实验性黄热病疫苗,我们应用了感染性DNA克隆技术。感染性DNA是指一种质粒,其在巨细胞病毒(CMV)启动子下游编码17D疫苗的全长RNA基因组。该疫苗旨在转录全长病毒RNA,并在体外和体内产生17D疫苗病毒。用10 ng感染性DNA质粒转染足以在体外启动疫苗病毒的复制。在缺乏IFN-α/β/γ受体的AG129小鼠中证实了亲本17D病毒和感染性DNA衍生的17D病毒的安全性。最后,用单一20 μg剂量的感染性DNA质粒直接接种BALB/c小鼠,导致动物血清转化并产生病毒特异性中和抗体。我们得出结论,感染性DNA免疫方法结合了DNA疫苗和减毒疫苗的特性,是一种有前景的黄热病疫苗接种策略。

相似文献

1
Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.
Virology. 2014 Nov;468-470:28-35. doi: 10.1016/j.virol.2014.07.050. Epub 2014 Aug 16.
2
Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone.
J Gen Virol. 2015 Apr;96(Pt 4):804-814. doi: 10.1099/jgv.0.000026. Epub 2014 Dec 16.
3
DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice.
J Infect Dis. 2014 Jun 15;209(12):1882-90. doi: 10.1093/infdis/jiu114. Epub 2014 Feb 28.
5
Early IFN-gamma production after YF 17D vaccine virus immunization in mice and its association with adaptive immune responses.
PLoS One. 2013 Dec 6;8(12):e81953. doi: 10.1371/journal.pone.0081953. eCollection 2013.
6
Development of a Bicistronic Yellow Fever Live Attenuated Vaccine with Reduced Neurovirulence and Viscerotropism.
Microbiol Spectr. 2022 Oct 26;10(5):e0224622. doi: 10.1128/spectrum.02246-22. Epub 2022 Aug 18.
7
A chimeric yellow fever-Zika virus vaccine candidate fully protects against yellow fever virus infection in mice.
Emerg Microbes Infect. 2020 Mar 2;9(1):520-533. doi: 10.1080/22221751.2020.1730709. eCollection 2020.
9
Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.
J Clin Invest. 2014 Jul;124(7):3147-58. doi: 10.1172/JCI75429. Epub 2014 Jun 9.
10
Comparing immunogenicity and protective efficacy of the yellow fever 17D vaccine in mice.
Emerg Microbes Infect. 2021 Dec;10(1):2279-2290. doi: 10.1080/22221751.2021.2008772.

引用本文的文献

1
A bivalent self-amplifying RNA vaccine against yellow fever and Zika viruses.
Front Immunol. 2025 Apr 29;16:1569454. doi: 10.3389/fimmu.2025.1569454. eCollection 2025.
2
Development of nucleic acid-based vaccines against dengue and other mosquito-borne flaviviruses: the past, present, and future.
Front Immunol. 2025 Jan 7;15:1475886. doi: 10.3389/fimmu.2024.1475886. eCollection 2024.
3
Rational design of a DNA-launched live attenuated vaccine against human enterovirus 71.
Virol Sin. 2024 Oct;39(5):812-820. doi: 10.1016/j.virs.2024.09.008. Epub 2024 Sep 19.
4
rescue of arboviruses directly from subgenomic DNA fragments.
Emerg Microbes Infect. 2024 Dec;13(1):2356140. doi: 10.1080/22221751.2024.2356140. Epub 2024 May 26.
5
Live-attenuated CHIKV vaccine with rearranged genome replicates in vitro and induces immune response in mice.
PLoS Negl Trop Dis. 2024 Apr 22;18(4):e0012120. doi: 10.1371/journal.pntd.0012120. eCollection 2024 Apr.
7
Live-Attenuated VEEV Vaccine Delivered by iDNA Using Microneedles Is Immunogenic in Rabbits.
Front Trop Dis. 2022 Mar;3. doi: 10.3389/fitd.2022.813671. Epub 2022 Mar 18.
8
The Present and Future of Yellow Fever Vaccines.
Pharmaceuticals (Basel). 2021 Sep 1;14(9):891. doi: 10.3390/ph14090891.
9
Re-thinking yellow fever vaccines: fighting old foes with new generation vaccines.
Hum Vaccin Immunother. 2022 Dec 31;18(1):1895644. doi: 10.1080/21645515.2021.1895644. Epub 2021 May 11.
10
A single-dose live attenuated chimeric vaccine candidate against Zika virus.
NPJ Vaccines. 2021 Jan 29;6(1):20. doi: 10.1038/s41541-021-00282-y.

本文引用的文献

1
Yellow Fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data.
PLoS Med. 2014 May 6;11(5):e1001638. doi: 10.1371/journal.pmed.1001638. eCollection 2014 May.
2
DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice.
J Infect Dis. 2014 Jun 15;209(12):1882-90. doi: 10.1093/infdis/jiu114. Epub 2014 Feb 28.
3
A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available.
Vaccine. 2014 Mar 10;32(12):1326-37. doi: 10.1016/j.vaccine.2014.01.040. Epub 2014 Jan 29.
4
Early IFN-gamma production after YF 17D vaccine virus immunization in mice and its association with adaptive immune responses.
PLoS One. 2013 Dec 6;8(12):e81953. doi: 10.1371/journal.pone.0081953. eCollection 2013.
5
Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing.
J Infect Dis. 2014 Feb 1;209(3):334-44. doi: 10.1093/infdis/jit546. Epub 2013 Oct 17.
6
Risk of yellow fever vaccine-associated viscerotropic disease among the elderly: a systematic review.
Vaccine. 2013 Dec 2;31(49):5798-805. doi: 10.1016/j.vaccine.2013.09.030. Epub 2013 Sep 27.
7
Yellow fever vaccination: is one dose always enough?
Travel Med Infect Dis. 2013 Sep-Oct;11(5):266-73. doi: 10.1016/j.tmaid.2013.08.007. Epub 2013 Sep 5.
8
Safety profile of the yellow fever vaccine Stamaril®: a 17-year review.
Expert Rev Vaccines. 2013 Nov;12(11):1351-68. doi: 10.1586/14760584.2013.836320. Epub 2013 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验