Gorostiza E Axel, Depetris-Chauvin Ana, Frenkel Lia, Pírez Nicolás, Ceriani María Fernanda
Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Avenida Patricias Argentinas 435, 1405-BWE Buenos Aires, Argentina.
Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Avenida Patricias Argentinas 435, 1405-BWE Buenos Aires, Argentina.
Curr Biol. 2014 Sep 22;24(18):2161-2167. doi: 10.1016/j.cub.2014.07.063. Epub 2014 Aug 21.
Daily cycles of rest and activity are a common example of circadian control of physiology. In Drosophila, rhythmic locomotor cycles rely on the activity of 150-200 neurons grouped in seven clusters [1, 2]. Work from many laboratories points to the small ventral lateral neurons (sLNvs) as essential for circadian control of locomotor rhythmicity [3-7]. sLNv neurons undergo circadian remodeling of their axonal projections, opening the possibility for a circadian control of connectivity of these relevant circadian pacemakers [8]. Here we show that circadian plasticity of the sLNv axonal projections has further implications than mere structural changes. First, we found that the degree of daily structural plasticity exceeds that originally described [8], underscoring that changes in the degree of fasciculation as well as extension or pruning of axonal terminals could be involved. Interestingly, the quantity of active zones changes along the day, lending support to the attractive hypothesis that new synapses are formed while others are dismantled between late night and the following morning. More remarkably, taking full advantage of the GFP reconstitution across synaptic partners (GRASP) technique [9], we showed that, in addition to new synapses being added or removed, sLNv neurons contact different synaptic partners at different times along the day. These results lead us to propose that the circadian network, and in particular the sLNv neurons, orchestrates some of the physiological and behavioral differences between day and night by changing the path through which information travels.
日常的休息和活动周期是昼夜节律对生理进行控制的一个常见例子。在果蝇中,有节律的运动周期依赖于150 - 200个神经元的活动,这些神经元聚集成七个簇[1,2]。许多实验室的研究表明,小的腹外侧神经元(sLNvs)对于运动节律的昼夜节律控制至关重要[3 - 7]。sLNv神经元的轴突投射会经历昼夜节律重塑,这为这些相关昼夜节律起搏器的连接性进行昼夜节律控制提供了可能性[8]。在这里,我们表明sLNv轴突投射的昼夜节律可塑性所产生的影响不仅仅是单纯的结构变化。首先,我们发现每日结构可塑性的程度超过了最初所描述的[8],这突出表明轴突束的程度变化以及轴突终末的延伸或修剪可能都参与其中。有趣的是,活跃区的数量在一天中会发生变化,这支持了一个引人注目的假设,即在深夜到次日清晨期间,新的突触形成而其他突触被拆解。更值得注意的是,充分利用跨突触伙伴的绿色荧光蛋白重组(GRASP)技术[9],我们表明,除了有新的突触被添加或移除之外,sLNv神经元在一天中的不同时间与不同的突触伙伴建立联系。这些结果使我们提出,昼夜节律网络,特别是sLNv神经元,通过改变信息传播的路径来协调白天和夜晚之间的一些生理和行为差异。