Suppr超能文献

人类基底神经节和视觉皮层中价值驱动的注意力优先信号。

Value-driven attentional priority signals in human basal ganglia and visual cortex.

作者信息

Anderson Brian A, Laurent Patryk A, Yantis Steven

机构信息

Johns Hopkins University, Baltimore, MD 21218, United States.

Johns Hopkins University, Baltimore, MD 21218, United States.

出版信息

Brain Res. 2014 Oct 31;1587:88-96. doi: 10.1016/j.brainres.2014.08.062. Epub 2014 Aug 27.

Abstract

Goal-directed and stimulus-driven factors determine attentional priority through a well defined dorsal frontal-parietal and ventral temporal-parietal network of brain regions, respectively. Recent evidence demonstrates that reward-related stimuli also have high attentional priority, independent of their physical salience and goal-relevance. The neural mechanisms underlying such value-driven attentional control are unknown. Using human functional magnetic resonance imaging, we demonstrate that the tail of the caudate nucleus and extrastriate visual cortex respond preferentially to task-irrelevant but previously reward-associated objects, providing an attentional priority signal that is sensitive to reward history. The caudate tail has not been implicated in the control of goal-directed or stimulus-driven attention, but is well suited to mediate the value-driven control of attention. Our findings reveal the neural basis of value-based attentional priority.

摘要

目标导向和刺激驱动因素分别通过明确的背侧额叶-顶叶和腹侧颞叶-顶叶脑区网络来决定注意力优先级。最近的证据表明,与奖励相关的刺激也具有高注意力优先级,这与其物理显著性和目标相关性无关。这种价值驱动的注意力控制背后的神经机制尚不清楚。利用人类功能磁共振成像,我们证明尾状核尾部和纹外视觉皮层优先对与任务无关但先前与奖励相关的物体做出反应,提供了一个对奖励历史敏感的注意力优先级信号。尾状核尾部并未涉及目标导向或刺激驱动注意力的控制,但非常适合介导基于价值的注意力控制。我们的研究结果揭示了基于价值的注意力优先级的神经基础。

相似文献

1
Value-driven attentional priority signals in human basal ganglia and visual cortex.
Brain Res. 2014 Oct 31;1587:88-96. doi: 10.1016/j.brainres.2014.08.062. Epub 2014 Aug 27.
2
Reward processing in the value-driven attention network: reward signals tracking cue identity and location.
Soc Cogn Affect Neurosci. 2017 Mar 1;12(3):461-467. doi: 10.1093/scan/nsw141.
3
Neural correlates of attentional capture by stimuli previously associated with social reward.
Cogn Neurosci. 2020 Jan;11(1-2):5-15. doi: 10.1080/17588928.2019.1585338. Epub 2019 Mar 5.
4
Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
Prog Brain Res. 2000;126:193-215. doi: 10.1016/S0079-6123(00)26015-9.
5
Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
J Neurosci. 2018 Mar 7;38(10):2495-2504. doi: 10.1523/JNEUROSCI.2724-17.2018. Epub 2018 Feb 2.
6
Goal-Directed and Habit-Like Modulations of Stimulus Processing during Reinforcement Learning.
J Neurosci. 2017 Mar 15;37(11):3009-3017. doi: 10.1523/JNEUROSCI.3205-16.2017. Epub 2017 Feb 13.
7
History Modulates Early Sensory Processing of Salient Distractors.
J Neurosci. 2021 Sep 22;41(38):8007-8022. doi: 10.1523/JNEUROSCI.3099-20.2021. Epub 2021 Jul 30.
9
Trial history effects in the ventral attentional network.
J Cogn Neurosci. 2014 Dec;26(12):2789-97. doi: 10.1162/jocn_a_00678. Epub 2014 Jun 24.
10
Value-driven attentional capture enhances distractor representations in early visual cortex.
PLoS Biol. 2019 Aug 9;17(8):e3000186. doi: 10.1371/journal.pbio.3000186. eCollection 2019 Aug.

引用本文的文献

1
Predicting response speed and age from task-evoked effective connectivity.
Netw Neurosci. 2025 Apr 30;9(2):591-614. doi: 10.1162/netn_a_00447. eCollection 2025.
3
Information-driven attentional capture.
Atten Percept Psychophys. 2025 Apr;87(3):721-727. doi: 10.3758/s13414-024-03008-z. Epub 2025 Feb 19.
4
The influence of emotional feedback material type on attentional capture at different presentation times.
PLoS One. 2024 Sep 16;19(9):e0310022. doi: 10.1371/journal.pone.0310022. eCollection 2024.
5
Impact of data processing varieties on DCM estimates of effective connectivity from task-fMRI.
Hum Brain Mapp. 2024 Jun 1;45(8):e26751. doi: 10.1002/hbm.26751.
6
Aging impairs reactive attentional control but not proactive distractor inhibition.
J Exp Psychol Gen. 2024 Jul;153(7):1938-1959. doi: 10.1037/xge0001602. Epub 2024 May 23.
7
From learned value to sustained bias: how reward conditioning changes attentional priority.
Front Hum Neurosci. 2024 Apr 3;18:1354142. doi: 10.3389/fnhum.2024.1354142. eCollection 2024.
8
Manipulating the reliability of target-color information modulates value-driven attentional capture.
Atten Percept Psychophys. 2024 May;86(4):1108-1119. doi: 10.3758/s13414-024-02878-7. Epub 2024 Mar 27.
9
Trichotomy revisited: A monolithic theory of attentional control.
Vision Res. 2024 Apr;217:108366. doi: 10.1016/j.visres.2024.108366. Epub 2024 Feb 21.
10
Implicit Selective Attention: The Role of the Mesencephalic-basal Ganglia System.
Curr Neuropharmacol. 2024;22(9):1497-1512. doi: 10.2174/1570159X21666230831163052.

本文引用的文献

1
The visual corticostriatal loop through the tail of the caudate: circuitry and function.
Front Syst Neurosci. 2013 Dec 6;7:104. doi: 10.3389/fnsys.2013.00104. eCollection 2013.
2
Generalization of value-based attentional priority.
Vis cogn. 2012 Jan 1;20(6). doi: 10.1080/13506285.2012.679711.
3
Attentional bias for nondrug reward is magnified in addiction.
Exp Clin Psychopharmacol. 2013 Dec;21(6):499-506. doi: 10.1037/a0034575. Epub 2013 Oct 14.
4
Neural correlates of reward-driven attentional capture in visual search.
Brain Res. 2013 Sep 26;1532:32-43. doi: 10.1016/j.brainres.2013.07.044. Epub 2013 Aug 2.
5
Why skill matters.
Trends Cogn Sci. 2013 Sep;17(9):434-41. doi: 10.1016/j.tics.2013.07.001. Epub 2013 Aug 1.
6
7
A value-driven mechanism of attentional selection.
J Vis. 2013 Apr 15;13(3):7. doi: 10.1167/13.3.7.
9
Persistence of value-driven attentional capture.
J Exp Psychol Hum Percept Perform. 2013 Feb;39(1):6-9. doi: 10.1037/a0030860. Epub 2012 Nov 26.
10
Reward grabs the eye: oculomotor capture by rewarding stimuli.
Vision Res. 2012 Dec 1;74:80-5. doi: 10.1016/j.visres.2012.07.024. Epub 2012 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验