Brüning Thomas, Bartsch Rüdiger, Bolt Hermann Maximillian, Desel Herbert, Drexler Hans, Gundert-Remy Ursula, Hartwig Andrea, Jäckh Rudolf, Leibold Edgar, Pallapies Dirk, Rettenmeier Albert W, Schlüter Gerhard, Stropp Gisela, Sucker Kirsten, Triebig Gerhard, Westphal Götz, van Thriel Christoph
Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany,
Arch Toxicol. 2014 Oct;88(10):1855-79. doi: 10.1007/s00204-014-1346-z. Epub 2014 Sep 3.
There is a need of guidance on how local irritancy data should be incorporated into risk assessment procedures, particularly with respect to the derivation of occupational exposure limits (OELs). Therefore, a board of experts from German committees in charge of the derivation of OELs discussed the major challenges of this particular end point for regulatory toxicology. As a result, this overview deals with the question of integrating results of local toxicity at the eyes and the upper respiratory tract (URT). Part 1 describes the morphology and physiology of the relevant target sites, i.e., the outer eye, nasal cavity, and larynx/pharynx in humans. Special emphasis is placed on sensory innervation, species differences between humans and rodents, and possible effects of obnoxious odor in humans. Based on this physiological basis, Part 2 describes a conceptual model for the causation of adverse health effects at these targets that is composed of two pathways. The first, "sensory irritation" pathway is initiated by the interaction of local irritants with receptors of the nervous system (e.g., trigeminal nerve endings) and a downstream cascade of reflexes and defense mechanisms (e.g., eyeblinks, coughing). While the first stages of this pathway are thought to be completely reversible, high or prolonged exposure can lead to neurogenic inflammation and subsequently tissue damage. The second, "tissue irritation" pathway starts with the interaction of the local irritant with the epithelial cell layers of the eyes and the URT. Adaptive changes are the first response on that pathway followed by inflammation and irreversible damages. Regardless of these initial steps, at high concentrations and prolonged exposures, the two pathways converge to the adverse effect of morphologically and biochemically ascertainable changes. Experimental exposure studies with human volunteers provide the empirical basis for effects along the sensory irritation pathway and thus, "sensory NOAEChuman" can be derived. In contrast, inhalation studies with rodents investigate the second pathway that yields an "irritative NOAECanimal." Usually the data for both pathways is not available and extrapolation across species is necessary. Part 3 comprises an empirical approach for the derivation of a default factor for interspecies differences. Therefore, from those substances under discussion in German scientific and regulatory bodies, 19 substances were identified known to be human irritants with available human and animal data. The evaluation started with three substances: ethyl acrylate, formaldehyde, and methyl methacrylate. For these substances, appropriate chronic animal and a controlled human exposure studies were available. The comparison of the sensory NOAEChuman with the irritative NOAECanimal (chronic) resulted in an interspecies extrapolation factor (iEF) of 3 for extrapolating animal data concerning local sensory irritating effects. The adequacy of this iEF was confirmed by its application to additional substances with lower data density (acetaldehyde, ammonia, n-butyl acetate, hydrogen sulfide, and 2-ethylhexanol). Thus, extrapolating from animal studies, an iEF of 3 should be applied for local sensory irritants without reliable human data, unless individual data argue for a substance-specific approach.
对于如何将局部刺激性数据纳入风险评估程序,尤其是在推导职业接触限值(OELs)方面,存在指导需求。因此,来自负责推导OELs的德国委员会的专家委员会讨论了这一特定终点对监管毒理学的主要挑战。结果,本综述探讨了整合眼部和上呼吸道(URT)局部毒性结果的问题。第1部分描述了相关靶部位的形态学和生理学,即人类的外眼、鼻腔和喉/咽。特别强调了感觉神经支配、人与啮齿动物之间的物种差异以及令人厌恶的气味对人类可能产生的影响。基于这一生理学基础,第2部分描述了这些靶部位产生不良健康影响的概念模型,该模型由两条途径组成。第一条“感觉刺激”途径由局部刺激物与神经系统受体(如三叉神经末梢)的相互作用以及下游的反射和防御机制级联反应(如眨眼、咳嗽)引发。虽然该途径的初始阶段被认为是完全可逆的,但高浓度或长时间暴露可导致神经源性炎症并随后造成组织损伤。第二条“组织刺激”途径始于局部刺激物与眼睛和URT上皮细胞层的相互作用。适应性变化是该途径的第一反应,随后是炎症和不可逆损伤。无论这些初始步骤如何,在高浓度和长时间暴露下,这两条途径都会导致形态学和生物化学可确定变化的不良影响。对人类志愿者的实验性暴露研究为感觉刺激途径的效应提供了经验基础,因此,可以推导出“感觉无明显有害效应浓度(NOAEChuman)”。相比之下,对啮齿动物的吸入研究调查了第二条途径,得出“刺激性无明显有害效应浓度(NOAECanimal)”。通常,两条途径的数据都不可用,因此有必要进行跨物种外推。第3部分包括一种推导物种间差异默认因子的经验方法。因此,从德国科学和监管机构正在讨论的那些物质中,确定了19种已知对人类有刺激性且有可用人类和动物数据的物质。评估从三种物质开始:丙烯酸乙酯、甲醛和甲基丙烯酸甲酯。对于这些物质,有适当的慢性动物和对照人类暴露研究。将感觉NOAEChuman与刺激性NOAECanimal(慢性)进行比较,得出用于外推动物局部感觉刺激效应数据的物种间外推因子(iEF)为3。通过将其应用于数据密度较低的其他物质(乙醛、氨、乙酸正丁酯、硫化氢和2-乙基己醇),证实了该iEF的适用性。因此,从动物研究进行外推时,对于没有可靠人类数据的局部感觉刺激物,应应用3的iEF,除非个别数据支持采用物质特异性方法。